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Context: Automated static analysis (ASA) identifies potential source code anomalies early in the software
development lifecycle that could lead to field failures. Excessive alert generation and a large proportion of
unimportant or incorrect alerts (unactionable alerts) may cause developers to reject the use of ASA. Tech-
niques that identify anomalies important enough for developers to fix (actionable alerts) may increase
the usefulness of ASA in practice.
Objective: The goal of this work is to synthesize available research results to inform evidence-based
selection of actionable alert identification techniques (AAIT).
Method: Relevant studies about AAITs were gathered via a systematic literature review.
Results: We selected 21 peer-reviewed studies of AAITs. The techniques use alert type selection; contex-
tual information; data fusion; graph theory; machine learning; mathematical and statistical models; or
dynamic detection to classify and prioritize actionable alerts. All of the AAITs are evaluated via an exam-
ple with a variety of evaluation metrics.
Conclusion: The selected studies support (with varying strength), the premise that the effective use of
ASA is improved by supplementing ASA with an AAIT. Seven of the 21 selected studies reported the pre-
cision of the proposed AAITs. The two studies with the highest precision built models using the subject
program’s history. Precision measures how well a technique identifies true actionable alerts out of all
predicted actionable alerts. Precision does not measure the number of actionable alerts missed by an
AAIT or how well an AAIT identifies unactionable alerts. Inconsistent use of evaluation metrics, subject
programs, and ASAs in the selected studies preclude meta-analysis and prevent the current results from
informing evidence-based selection of an AAIT. We propose building on an actionable alert identification
benchmark for comparison and evaluation of AAIT from literature on a standard set of subjects and uti-
lizing a common set of evaluation metrics.
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1. Introduction

Static analysis is ‘‘the process of evaluating a system or compo-
nent based on its form, structure, content, or documentation’’ [26].
Automated static analysis (ASA), like Lint [29], can identify com-
mon coding problems early in the development process via a tool
that automates the inspection1 of source code [60]. ASA reports po-
inspection is ‘‘a static analysis technique that relies on visual examination of
ment products to detect errors, violations of development standards, and
roblems’’ [28].
tential source code anomalies,2 which we call alerts, like null pointer
dereferences, buffer overflows, and style inconsistencies [25]. Devel-
opers inspect each alert to determine if the alert is an indication of
an anomaly important enough for the developer to fix. If a developer
determines the alert is an important, fixable anomaly, then we call
the alert an actionable alert [21,22,45]. When an alert is not an indi-
cation of an actual code anomaly or the alert is deemed unimportant
2 An anomaly is a ‘‘condition that deviates from expectations, based on require-
ments specifications, design documents, user documents, or standards, or from
someone’s perceptions or experiences’’ [27].
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Warning Ranking

Reduction
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to the developer (e.g. the alert indicates a source code anomaly
inconsequential to the program’s functionality as perceived by the
developer), we call the alert an unactionable alert [21,22].

Static analysis tools generate many alerts; an alert density of
40 alerts per thousand lines of code (KLOC) has been empirically
observed [21]. Developers and researchers found that 35–91% of
reported alerts are unactionable [1,4,21,22,31,32,35,36]. A large
number of unactionable alerts may lead developers and manag-
ers to reject the use of ASA as part of the development process
due to the overhead of alert inspection [4,32,35,36]. Suppose, a
tool reports 1000 alerts and each alert requires 5 min for inspec-
tion. The time to inspect the alerts would take 10.4 uninter-
rupted 8-h workdays. Identifying the 35–91% unactionable
alerts could lead to timesavings of 3.6–9.5 days of developer
time. Identification of three or four actionable alerts in two
industrial projects programmed in Java was found by Wagner
et al. to justify the cost of ASA, if the alerts could lead to field
failures [53].

Improving ASA’s ability to generate predominantly actionable
alerts through development of tools that are both sound3 and com-
plete4 is an intractable problem [9,10]. Additionally, the develop-
ment of algorithms underlying ASA requires a trade-off between
the level of analysis and execution time [9]. Methods proposed for
improving static analysis include annotations, which could be spec-
ified incorrectly and require developer overhead, and allowing the
developer to select ASA properties, like alert types, specific to their
development environment and project [58].

Another way to increase the number of actionable alerts identi-
fied by static analysis is to use the alerts generated by ASA with
other information about the software under analysis to prioritize
or classify alerts. We call these techniques actionable alert identi-
fication techniques5 (AAIT). Overall, AAITs seek to prioritize or clas-
sify alerts generated by ASA after an ASA run or use information
about the program to guide when ASA is run. AAITs differ from
ASA in that they are not refinements to ASA algorithms to approach
soundness and/or completeness. Instead, AAITs seek to utilize other
information outside of ASA to classify or prioritize ASA alerts quickly.
Classification AAITs divide alerts into two groups: alerts predicted to
be actionable and alerts predicted to be unactionable [21]. Prioritization
AAITs order alerts by the likelihood an alert is an indication of an
actionable alert [21].

The goal of this work is to synthesize available research results
to inform evidence-based selection of actionable alert identifica-
tion techniques. To accomplish this goal we performed a system-
3 For this research, we consider the generation of an alert as the indication of a
potential anomaly, i.e. the goal of ASA tools are to ‘‘prove errors exist’’ [13]. Therefore,
sound ASA implies that all reported alerts are (actionable) and unsound ASA implies
that unactionable alerts are generated [13].

4 For this research, we consider the generation of an alert as the indication of a
potential anomaly. Therefore, complete static analysis ensures that if there is a place
where an anomaly could occur in the source code, the tool reports an alert [13].

5 AAITs are techniques that identify actionable alerts. Some AAITs have been
referred to as false positive or unactionable alert mitigation [21,22], warning
prioritization [31,32], and actionable alert prediction [45].
atic literature review (SLR), which is ‘‘a means of evaluating and
interpreting all available research relevant to a particular research
question or topic area or phenomenon of interest’’ [33]. The spe-
cific objectives of this SLR are the following:

� To identify categories of AAIT input artifacts, both those that
come from the alerts generated by ASA and those artifacts that
may come from other resources.
� To summarize current research solutions for AAIT.
� To synthesize the current results from AAIT.
� To identify the research challenges and needs in the area of

AAIT.

The remainder of this paper is as follows: Section 2 reports
the SLR method followed by an overview of the selected studies’
characteristics (e.g. publication year and source) in Section 3.
Section 4 describes the categories of software artifact character-
istics that serve as inputs to AAIT. Section 5 provides a general-
ized overview of the types of AAITs identified in the selected
studies. Section 6 describes the specific studies that use alert
classification, while Section 7 describes the specific studies that
use alert prioritization. Section 8 provides a combined discus-
sion of all selected studies, and describes a meta- analysis of
the results; Section 9 concludes; and Section 10 provides direc-
tion for future work from the challenges and needs in the area
of AAITs.
2. Overview of systematic literature review method

We used the SLR guidelines described by Kitchenham [33] to
develop our SLR protocol. The SLR protocol for addressing the re-
search objectives proposed in Section 1, are presented in the fol-
lowing subsections. The SLR protocol describes the research
questions, strategy for searching for related studies, selection of
studies for inclusion in the SLR, analysis of the selected studies,
and data synthesis, as will be discussed in the following
subsections.

2.1. Research questions

We derived our research questions directly from the SLR objec-
tives. We are interested in answering the following research
questions:

� RQ1: What are the categories of artifacts used as input for AAIT?
� RQ2: What are the current approaches for AAITs?
� RQ3: What conclusions can we draw about the efficacy of AAITs

from results presented in the selected studies?
� RQ4: What are the research challenges and needs in the area of

AAITs?

Since AAITs are performed after ASA, we first want to under-
stand the sources of information used to generate an alert’s classi-
fication or prioritization. Next, we want to understand the
underlying algorithms for classifying or prioritizing alerts. The
third research question seeks to synthesize the results from AAIT
and identify how well AAIT techniques work, if at all. The final
research question is for the synthesis of open problems in the area
of AAITs.

2.2. Search strategy

This section outlines the process for generating search terms,
the strategy for searching, the databases searched, and the docu-
mentation for the search.



Table 2
Number of studies evaluated at each stage of selection process.

Stage Papers Added papers Total papers

Stage 1: by title 17,571 0 17,571
Stage 2: by abstract 768 1 769
Stage 3: by paper 70 1 71
Final: selected studies 16 5 (1 replaced) 21
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2.2.1. Search terms and strategy
We identified key terms used for our search from prior experi-

ence with the subject area. Our main search term is ‘‘static analy-
sis’’ to focus on solutions that identify actionable alerts when using
ASA. The other search terms fall into two categories: descriptive
names for alerts generated by static analysis and techniques for
identification. Table 1 summarizes these terms.

Database search strings combined the keyword ‘‘static analysis’’
with one term from the alert descriptor column and one term from
the identification technique column in Table 1 (e.g. ‘‘static analysis
alert prioritization’’). Using each combination of alert descriptor
and identification technique, there were 30 search strings for each
database. If there was more than one search box with Boolean oper-
ators, (e.g. Compendex/Inspec), then ‘‘static analysis’’ was entered in
the first box and the alert descriptor and identification technique
terms were added to the other boxes with the AND operator selected.

2.2.2. Databases
We gathered the list of potential databases from other SLRs and

from the North Carolina State University library’s website of sug-
gested databases for Computer Science research. We searched
the following databases:

� ACM Digital Library
� Compendex/Inspec
� Computers and Applied Sciences Complete
� ISI Web of Knowledge
� IEEE Xplore
� ScienceDirect
� Springer Link

When databases allow for an advanced search, we excluded
non-refereed papers and books. Additionally, if we could restrict
papers by subject to Computer Science (e.g. Springer Link) we
did so. An initial search was conducted between October 2008
and January 2009. A second search was conducted between Octo-
ber and November of 2010. During the Stage 3 of study selection
(as explained in Section 2.3.1), only papers before the end of
2009 were considered.

2.3. Study selection

This section describes the process and documentation used for
selecting studies for the SLR of AAITs.

2.3.1. Study selection process
Selection of studies for inclusion in the SLR is a three-stage pro-

cess: (1) initial selection of studies based upon title; (2) selection of
studies based upon reading the abstract; and (3) further selection
of studies based upon reading the paper. Table 2 shows the number
of papers evaluated at each stage of the selection process. At Stage
1, we started with 17,571 distinct papers (excluding conference
proceedings and patents) from the database search and selected
768 that moved to the next stage of papers selection. A 769th pa-
per was added to Stage 2 of paper selection from the verification
efforts described in Section 2.3.3. At Stage 3, 70 papers from the
original search had relevant abstracts and warranted further read-
ing. The verification efforts added another one paper. The final se-
lected studies consisted of 16 papers. When searching the author’s
websites for additional work, one of the 16 papers was replaced by
a later paper. Four additional papers were added through searching
related work of the selected papers and the author’s websites.

Inclusion and exclusion criteria were focused on identifying pa-
pers that report AAITs that have been used in practice. Specifically,
we are interested in AAITs that are used after ASA has been run or
to select when and where to run ASA rather than on refinements
and enhancements to ASA algorithms. The inclusion and exclusion
criteria help refine our definition of AAIT to meet our research
objectives. Studies selected at each stage of the selection process
met our inclusion criteria:

� Full and short peer-reviewed papers with empirical results.
� Post ASA run alert classification or prioritization.
� Focus on automatically identifying if a single static analysis alert

or a group of alerts are actionable or unactionable as opposed to
using ASA results to identify fault- or failure-prone files.

Studies rejected at each stage of the selection process met our
exclusion criteria:

� Papers unrelated to static analysis or actionable alert
identification.
� Theoretical papers about AAITs (i.e. no empirical results).
� Dynamic analyses.
� Hybrid static–dynamic analyses where the static analysis por-

tion of the technique was used to drive improvements to the
dynamic portion of the technique rather than using the two
techniques synergistically or the dynamic technique to improve
the static technique.

During the first two selection stages, we tended to err on the
side of inclusion. For the first stage of selection, the inclusion and
exclusion criteria were loosened such that any titles that contained
the words ‘‘static analysis,’’ ‘‘model checking,’’ ‘‘abstract interpreta-
tion,’’ or any variation thereof were selected for inclusion in the
next stage of the study, unless they were blatantly outside the
scope of the research (e.g. in the field of electrical engineering).
Selection of the titles took approximately three days of effort.

In Stage 2, each abstract was read while considering the inclu-
sion and exclusion criteria. The reason for inclusion or exclusion
was documented in addition to a paper classification. A classifica-
tion of ‘‘1’’ denoted papers that should be fully read to determine
inclusion. A classification of ‘‘2’’ denoted supporting papers that
may be useful for the motivation of the SLR. A classification of
‘‘3’’ denoted papers that did not meet the inclusion criteria. One
additional paper was considered at Stage 2, which came from the
selection verification as will be discussed in Section 2.3.3. Selection
of the abstracts took approximately two days of effort.

Stage 3 incorporated a reading of the selected papers. Details
about the quality assessment (Section 2.4.1) and the data extrac-
tion (Section 2.4.2) were recorded. A final inclusion or exclusion
classification and corresponding reason were recorded. Papers
without empirical results were excluded from the SLR at Stage 3.
Selection of the papers and recording the appropriate data took
approximately a week and a half of effort.

Additional papers were mined from reading the related work
sections of selected papers. Three additional papers were identi-
fied: [36] from [21,22,31,32,35,45]; [30] from [58]; and [55] from
[21,22,32]. Additionally, the websites of the selected papers’
authors’ of post Stage 3 papers were mined for additional studies
that may have been missed during the database search. Because
of this search, an additional two studies were identified for
inclusion in the final set of 24 (specifically, [6,7]), one of which
replaced an earlier study by the same authors (specifically, [5]



Table 3
Quality assessment questions.

Is there a clearly stated research goal related to the identification of
actionable alerts?

Is there a defined and repeatable AAIT?
Are the limitations to the AAIT enumerated?
Is there a clear methodology for validating the AAIT?
Are the subject programs selected for validation relevant (e.g. large

enough to demonstrate efficacy of the technique) in the context of the
study and research goals?

Is there a control technique or process (random, comparison)?
Are the validation metrics relevant (e.g. evaluate the effectiveness of

the AAIT) to the research objective?
Were the presented results clear and relevant to the research objective
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was replaced by Boogerd and Moonen [7]) due to the reporting of
earlier results in addition to new results.

2.3.2. Study selection documentation
Before study selection, duplicate papers identified by different

database keyword searches were removed. The study data were
stored in Excel and the studies were listed in separate worksheets
for each stage of the selection process. For each study, we main-
tained some or all of the following information:

� Title
� Author(s)
� Conference (abbreviation and full name)
� Publication month
� Publication year
� Abstract

Additionally, for Stages 2 and 3 in the study selection, we in-
cluded the reason for inclusion and exclusion. After a stage was
complete, the selected studies were moved to a new worksheet
for the next stage, and any additional information required for
selection was obtained.

2.3.3. Selection verification
The first author did the selection of the studies following the

process outlined in Section 2.3.1. The second author provided val-
idation of the studies selected at each stage of the selection pro-
cess, except when verifying the final set of selected studies.

After Stage 1, 292 (1.6%) of the studies were randomly selected
for the second author to evaluate. The first author prepared the
selection, ensuring that the sample had approximately the same
proportion of selected and rejected studies as the full population.
Two hundred and seventy-eight (95.2%) of the studies had the same
selection by both the first and second author. The second author se-
lected one study the first author did not, and this study was included
in Stage 2 of the selection process. The remaining differences were
between studies the first author selected but the second author
did not. The discrepancy comes because of differences between
the interpretations of the hybrid exclusion criteria. The original hy-
brid exclusion criteria stated, ‘‘Hybrid static–dynamic analyses
where the static analysis portion of the technique was used to drive
improvements to the dynamic portion of the technique.’’ An analy-
sis of the studies that would not have moved on to the second stage
of the selection process because of the second author’s selection
showed that only one of the studies was a selected study in the final
set and was a hybrid study. A kappa value [11] of 0.46136 (with a 95%
confidence interval of 0.1751–0.7475) shows a moderate level of
agreement between the two author’s selections.

After Stage 2, the second author evaluated the abstracts for 48
(6.3%) randomly selected studies. We again ensured that the sam-
ple had approximately same distribution of selected and rejected
studies as the full population of studies. Forty-three (89.5%) of
the randomly selected studies had the same selection by the two
authors. The study the second author classified as ‘‘1’’ was included
in Stage 3 of study selection. A kappa value [11] of 0.7022 (with a
95% confidence interval of 0.4552–0.9492) shows a moderate level
of agreement between the two author’s selections.

2.4. Study analysis

After all stages of the SLR study selection were complete, the
next step measured the quality of the selected studies and
6 The kappa values and confidences interval were calculated via the following
website: http://faculty.vassar.edu/lowry/kappa.html.
extracted the data for the SLR from the studies. The following sec-
tions describe the data collected from each of the selected studies.

2.4.1. Study quality assessment
We are interested in assessing the quality of each of the selected

(e.g. post stage 3) studies. For each study, we answered the ques-
tions outlined in Table 3. All of the questions have three possible
responses and associated numerical values: yes (1), no (0), or
somewhat (0.5). The sum of responses for the quality assessment
questions provides a relative measure of study quality. The ques-
tions were generated based on the authors experiences with writ-
ing and reading research papers and the components that make up
a good paper. Therefore, there is potential bias toward the author’s
selected studies receiving a quality score of 10. However, four addi-
tional papers received a quality score of 10 and the average quality
score was 8.3. Eleven of the 21 selected studies did not report lim-
itations of their evaluation methodology. Seven of the selected
studies did not provide a control or baseline for a comparative
evaluation or did not provide limitations for their AAIT.

2.4.2. Study data extraction
For each post Stage 3 selected study (which we will refer to as

‘‘selected studies’’ from this point forward), we extracted the fol-
lowing data:

� Type of reference (journal, conference, workshop)
� Research objective
� AAIT type
� AAIT
� AAIT limitations
� Artifact characteristics
� Evaluation methodology (experiment, case study, etc.)
� Evaluation subjects
� Evaluation metrics and definitions
� Evaluation results
� Static analysis tools used
� Evaluation limitations

The data from the selected studies were maintained in several
locations: an internal wiki, paper notes, and Excel spreadsheets.
The study’s evaluation results were gathered into an Excel spread-
sheet by evaluation metrics, subject, and AAIT, which allowed for
easier synthesis of common data, to answer RQ3.

2.5. Data synthesis

For each research question defined in Section 2.1, we synthe-
sized the associated data collected from each selected study. Sec-
tion 4 provides an overview of artifact characteristics, which
stated in the study?
Are the limitations to the validation technique enumerated?
Is there a listing of contributions from the research?
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serve as inputs to many of the AAITs and answer research question
1 (RQ1). Section 5 provides a high-level overview of the AAITs, re-
search methodologies, and evaluation metrics used in the selected
studies, and provides an overview of the results for RQ2. Section 6
describes the specific results for RQ2 for studies that classify alerts
into actionable and unactionable groups. Section 7 describes the
specific results for RQ2 for studies that prioritize alerts by the like-
lihood an alert is actionable. Section 8 summarizes the results for
both classification and prioritization techniques for the SLR and an-
swers RQ3. Section 9 concludes and Section 10 discusses future
work, and addresses RQ4.

3. Overview of studies

We identified 21 studies in the literature that focus on classify-
ing or prioritizing alerts generated by ASA. An initial look at the
studies shows that, with the exception of one study, all work on
AAITs occurred during or after 2003 with the most studies (56%)
published in 2007 and 2008. Table 4 shows the frequency of pub-
lication of AAIT studies by year.

Additionally, we considered the venues of publication for the
selected papers. Table 5 shows the publication source for the se-
lected studies and the number of publications from those journals,
conferences, or workshops.

Study quality ranged from 3 to 10, where a quality value of 10 is
highest, as measured via the 10 questions asked in Section 2.4.1.
The quality of each study is presented in Table 6, which lists the se-
lected studies and the identifying information about each. The
average study quality was 8.3, which shows that most of the se-
lected studies were of high quality. The selected studies tended
Table 5
Publication source.

Publication

Asia–Pacific Software Engineering Conference
Computer Software Applications Conference
Empirical Software Engineering and Measurement
Foundations in Software Engineering
Information Processing Letters
International Haifa Verification Conference on Hardware and Software: Verification a
International Conference on Information and Communications Security
International Conference on Quality Software
International Conference on Scalable Information Systems
International Conference on Software Engineering
International Conference on Software Maintenance
International Conference on Software Quality
International Conference on Software Testing, Verification, and Validation
Mining Software Repositories
Software Metrics Symposium
Source Code Analysis and Manipulation
Static Analysis Symposium
Transactions on Software Engineering and Methodology
Transactions on Software Engineering

Table 4
Publication year.

Year #

1998 1
2003 1
2004 2
2005 2
2006 1
2007 4
2008 6
2009 4

Total 21
to lack a control AAIT for comparison and limitations of the valida-
tion methodology. The number of subject programs for each study
ranged from 1 to 15, with an average of four subject programs per
study.

4. Software artifact characteristics

One of the things AAITs have in common is that they utilize
additional information about software artifacts for the purpose of
classifying or prioritizing alerts as actionable or unactionable.
The additional information, called software artifact characteristics,
serves as the independent variables for predicting actionable
alerts. We are interested in answering the following question
about software artifact characteristics used in AAITs.

� RQ1: What are the categories of artifacts used as input for AAIT?

We can generalize the additional information used for AAITs
into categories based on the software artifact of origin. The soft-
ware artifact characteristics are a superset of the four categories
summarized below. A deeper discussion of the specific metrics
may be found in a supplementary technical report [20] and in
the papers selected for the SLR. The artifact characteristics for each
of the selected studies may be classified into one of the five catego-
ries described below.

� Alert characteristics (AC): Attributes associated with an alert gen-
erated via ASA. Alert characteristics are values such as alert type
(e.g. null pointer); code location (e.g. package, class, method,
line number); and tool-generated alert priority or severity.
� Code characteristics (CC): Attributes associated with the source

code surrounding or containing the alert. These attributes
may come from additional analysis of the source code or via
metrics about the code (e.g. lines per file, cyclomatic
complexity).
� Source code repository metrics (SCR): Attributes mined from the

source code repository (e.g. code churn, revision history).
� Bugdatabase metrics (BDB): Attributes mined from the bug data-

base. The information from the bug database can be tied to
changes in the source code repository to identify fault-fixes.
� Dynamic analyses metrics (DA): Attributes associated with ana-

lyzing the code during execution, typically consisting of the
dynamic analysis results serving as input to (e.g. invariants to
improve static analysis) or a refinement of static analysis (e.g.
Type #

Conference 1
Conference 1
Conference 1
Conference 2
Journal 1

nd Testing Conference 1
Conference 1
Conference 1
Conference 1
Conference 1
Conference 1
Conference 1
Conference 1
Workshop 1
Symposium 1
Workshop/conference 1
Symposium 2
Journal 1
Journal 1



Table 6
Summarization of the selected studies.

AAIT name Study Study
quality

Artifact char.
category

ASA Lang. Dis. in
seconds

AAIT approach Evaluation
methodology

AJ06 Aggarwal and Jalote [1] 6 CC BOON C 6.4 Contextual
information

Other

ALERTLIFTIME Kim and Ernst [31] 8.5 AC, SCR FINDBUGS, PMD,
JLINT

Java 7.4 Math/stat models Other baseline
comparison

APM Heckman and Williams
[21]

10 AC FINDBUGS Java 7.9 Math/stat models Benchmark

BM08B Boogerd and Moonen [6] 9 AC, CC, SCR, BDB QA C, QMORE C 6.5 Graph theory Other

CHECK ‘N’ CRASH, DSD-

CRASHER

Csallner et al. [14] 10 DA ESC/JAVA Java 6.6 Dynamic
detection

Other model
comparison

ELAN, EFANH, and
EFANV

Boogerd and Moonen [7] 6.5 CC Unspec. C 7.8 Graph theory Other baseline
comparison

FEEDBACK-RANK Kremenek et al. [35] 8 AC MC C 7.2 Machine learning Random and optimal
comp.

FIS Yu et al. [59] 9 CC Unspec. Java 6.10 Contextual
information

Other

HISTORYAWARE Williams and
Hollingsworth [55]

10 CC, SCR RETURN VALUE

CHECKER

C 6.3 Math/stat models Other model
comparison

HW09 Heckman and Williams
[22]

10 AC, CC, SCR FINDBUGS Java 6.7 Machine learning Benchmark

HWP Kim and Ernst [32] 8 AC, SCR FINDBUGS, PMD,
JLINT

Java 7.5 Math/stat models Train and test

INTFINDER Chen et al. [8] 9 DA Unspec. C 6.9 Dynamic
detection

Other baseline
comparison

ISA Kong et al. [34] 8 AC RATS, ITS4,
FLAWFINDER

C 7.6 Data fusion Other model
comparison

JKS05 Jung et al. [30] 8 CC AIRIC C 7.3 Machine learning Train and test
META-HEURISTIC Rungta and Mercer [44] 8 CC JLINT Java 6.8 Model checking Random and optimal

comp.

MMW08 Meng et al. [38] 3 AC FINDBUGS, PMD,
JLINT

Java 7.10 Data fusion Other

OAY98 Ogasawara et al. [40] 7 AC QA C C 6.1 Alert type
selection

Other

RPM08 Ruthruff et al. [45] 10 AC, CC, SCR FINDBUGS Java 7.11 Math/stat models Other model
comparison

SCAS Xiao and Pham [57] 7 CC Unspec. C 6.2 Contextual
information

Other

YCK07 Yi et al. [58] 9 CC AIRIC C 7.7 Machine learning Train and test

Z-RANKING Kremenek and Engler [36] 10 CC MC C 7.1 Math/stat models Random and optimal
comp.

Table 7
Studies by category of artifact characteristics.

Artifact characteristics category Number Percent

Alert characteristics (AC) 10 48
Code characteristic (CC) 12 57
Source code repository metrics (SCR) 6 29
Bug database metrics (BDB) 1 5
Dynamic analysis metrics (DA) 2 10
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results from test cases generated to test ASA alerts). Hybrid sta-
tic–dynamic analyses may help to mitigate the costs associated
with each distinct analysis technique [1]. These metrics are
associated with concrete executions of the program under anal-
ysis and are not appropriate for AAITs that do not incorporate
dynamic analyses.

Each of the AAIT described in the selected studies uses soft-
ware artifact characteristics from one or more of the above cat-
egories. The categories used by each AAIT are described in Table
6. Table 7 shows the number of studies that incorporate informa-
tion from the five categories of artifact characteristics, answering
RQ1: alert characteristics, code characteristics, source code
repository metrics, bug database metrics, dynamic analyses met-
rics. A study may have characteristics from more than one cate-
gory of origin.

The most popular sources of input to AAITs are ACs (48% of the
selected studies use ACs) and CCs (57% of the selected studies use
CCs). These data show that using information about the alerts, like
a developer would when inspecting alerts, may be useful to AAITs
for identifying actionable alerts.

Additionally, we can look at the number of studies that incorpo-
rate two or more categories of artifact characteristic data. Table 8
shows the number of studies that incorporate data from multiple
categories.
5. AAIT approaches and evaluation

The following subsections report the categories of AAIT ap-
proaches described in the selected studies as related to RQ2, the
evaluation methodology categories, and the subject programs
and evaluation methods used for AAIT evaluation. Table 6 presents
each of the selected studies and categorizes them with an AAIT
type and research methodology. Table 6 also provides a forward
reference to the subsection that discusses the specifics of a selected
study.

5.1. AAIT approaches

Each selected study describes an AAIT that uses different arti-
fact characteristics, as described in Section 4, to identify actionable



Table 8
Studies with data from multiple cat-
egories of artifact characteristics.

Artifact
characteristics
categories

Number

AC + CC + SCR + BDB 1
AC + CC + SCR 2
AC + SCR 2
CC + SCR 1

370 S. Heckman, L. Williams / Information and Software Technology 53 (2011) 363–387
and unactionable alerts. Additionally, the approach taken to use
the artifact characteristics to predict actionable and unactionable
alerts vary by selected study. Analysis of the proposed AAIT iden-
tified seven general approaches used by the AAIT in the selected
studies, which answer RQ2.

� RQ2: What are the current approaches for AAITs?

The following subsections introduce the general AAIT ap-
proaches identified from the selected studies. Each of the AAITs de-
scribed in the 21 selected studies fall into one of the seven
approaches listed in Table 9. Table 6 presents the AAIT approach
used for each AAIT reported in the selected studies. The most com-
mon types of AAIT approaches reported in the literature utilize
mathematical and statistical models and machine learning to pri-
oritize and classify alerts.

5.1.1. Alert type selection
ASA tools list the types of problems that can be detected (e.g. a

potential null pointer access or an unclosed stream) via a detector
or bug pattern, which we call alert type. ASA tools may allow for
selection of individual alert types by the user. Selecting alert types
that are more relevant for a code base leads to the reduction of re-
ported unactionable alerts, but may also lead to the suppression of
actionable alerts in the types that were not selected. Alert type
selection works best for alert types that tend to be homogeneous
by type (e.g. where all alerts of a type are either actionable or unac-
tionable, but not both) [31,32,35]. The alert types that are most rel-
evant may vary by code base. Therefore, a study of the actionability
of alert types for a particular code base is required to select the
appropriate types. If alerts sharing the same type have been fixed
in the past, then the other alerts with that same alert type may
be actionable. AAITs that use alert type selection either use the
alert history for a project that can be found through mining the
source code repository or bug database or additional knowledge
about the specific alert types to determine which alert types to se-
lect for a project.

5.1.2. Contextual information
Due to imprecision in the analysis, ASA may miss anomalies

[1,59]. ASA may also not understand code constructs like pointers,
which may lead to a large number of unactionable alerts [1,57]. By
Table 9
AAIT approach.

AAIT approach Number

Alert type selection 1
Contextual information 3
Data fusion 2
Dynamic detection 2
Graph theory 2
Machine learning 4
Mathematical and statistical models 6
Model checking 1
understanding the precision of ASA and selecting areas of code that
an ASA tool can analyze well (e.g. code with no pointers), the num-
ber of generated and unactionable alerts can be reduced. The selec-
tion of code areas to analyze by ASA can be a manual or automated
process created by knowledge of the ASA tool’s limitations.

5.1.3. Data fusion
Data fusion combines data from multiple ASA tools and merges

redundant alerts. Similar alerts from multiple tools increase the
confidence that an alert is actionable [34].

5.1.4. Graph theory
AAITs that use graph theory to identify actionable alerts take

advantage of the source code’s structure to provide additional in-
sight into static analysis. System dependence graphs provide both
the control and data flow for a program and are used to calculate
the execution likelihood for a particular location of code that con-
tains a static analysis alert [4,7]. Other graphs of artifact character-
istics, like the source code repository history, can also show the
relationship between source code changes that may be associated
with openings and closures of static analysis alerts [6].

5.1.5. Machine learning
Machine learning ‘‘is the extraction of implicit, previously

unknown, and potentially useful information about data’’ [56].
Machine learning techniques find patterns within sets of data
and may then use those patterns to predict if new instances of the
data are similar to other instances. AAITs can use machine learning
to predict or prioritize alerts as being actionable or unactionable by
using information about the alerts and the surrounding code
[22,30,35,58].

5.1.6. Mathematical and statistical models
AAITs may use mathematical or statistical models to determine

if an alert is actionable or unactionable. In some cases, these AAITs
may exploit knowledge about the specific ASA tool to determine if
other alerts are actionable or not [36]. Other AAITs may use the his-
tory of the code to build a linear model that may predict actionable
alerts [31,32,45,55]. Additionally, knowledge about the ASA tools
and the observed relationships between the alerts can be used to
create mathematical models [21].

5.1.7. Dynamic detection
Unlike static analysis, the results of dynamic analyses do not

require inspection because a failing condition is identified
through program execution [14]. Dynamic analyses can improve
the results generated by static analysis through the generation
of test cases that may cause the location identified by the alert
to demonstrate faulty behavior [14]. Additionally, by using static
analysis to focus automated test case generation, some of the lim-
itations to automated test case generation, like a large number of
generated tests, may be reduced [14]. Other dynamic detection
techniques utilize instrumented code to identify concretely incor-
rect executions [8].
Table 10
Evaluation methodologies for selected studies.

Evaluation methodologies Number

Baseline comparison 3
Benchmarks 2
Comparison to other AAIT 4
Other 6
Random and optimal comparison 3
Train and test 3



Table 11
Subject program information (uk means unknown, which means the information is not reported in the study).

Name Version Static analysis Lang. KLOC # Alerts Alert density AAIT

AbsList uk JLINT Java 7.267 6 0.83 META-HEURISTIC [44]
Antiword uk n/a C 27 n/a n/a ELAN, EFANH, and EFANV[7]
Apache Web Server 10/29/2003 RETURN VALUE CHECKER C 200 738 3.69 HISTORYAWARE [55]
Apache XML Security 1.0.4 ESC/JAVA 2 Java 12.4 111 8.95 CHECK ‘N’ CRASH, DSD-CRASHER[14]
Apache XML Security 1.0.5 D2 ESC/JAVA 2 Java 12.8 104 8.13 CHECK ‘N’ CRASH, DSD-CRASHER[14]
Apache XML Security 1.0.71 ESC/JAVA 2 Java 10.3 120 11.65 CHECK ‘N’ CRASH, DSD-CRASHER[14]
AryList uk JLINT Java 7.169 6 0.84 META-HEURISTIC [44]
Branch 1 uk SCAS uk uk 1692 n/a SCAS [57]
Branch 2 uk SCAS uk uk 2175 n/a SCAS [57]
Branch 3 uk SCAS uk uk 3282 n/a SCAS [57]
Cache uk n/a C 3 n/a n/a ELAN, EFANH, and EFANV[7]
Check uk n/a C 3 n/a n/a ELAN, EFANH, and EFANV [7]
Chktex uk n/a C 4 n/a n/a ELAN, EFANH, and EFANV[7]
Columba Varies FINDBUGS, PMD, JLINT Java uk uk n/a ALERTLIFETIME [31]
Columba 9/11/2003a

FINDBUGS, PMD, JLINT Java 121 2331c 19.26 HWP [32]
Company X uk MC C uk uk n/a Z-RANKING [36]
Company X uk MC C 800 640 0.80 FEEDBACK-RANK [35]
Cut uk n/a C 1 n/a n/a ELAN, EFANH, and EFANV [7]
cvsobjects 0.5beta FINDBUGS Java 1.6 7 4.38 APM [21]
deadlock uk JLINT Java 7.151 6 0.84 META-HEURISTIC [44]

DOM4J 1.6.1 UNNAMED Java uk uk uk FIS [59]
Google uk FINDBUGS Java uk 1652 n/a RPM08 [45]
Groovy 1.0 beta 1 ESC/JAVA 2 Java 2 34.00 17.00 CHECK ‘N’ CRASH, DSD-CRASHER[14]
Importscrubber 1.4.3 FINDBUGS Java 1.7 35 20.59 APM [21]
Indent uk n/a C 26 n/a n/a ELAN, EFANH, and EFANV [7]
iTrust Fall 2007 FINDBUGS Java 14.1 110 7.80 APM [21]
Java Path Finder r1580 UNNAMED Java uk uk uk FIS [59]
jbook 1.4 FINDBUGS Java 1.3 52 40.00 APM [21]
JBoss JMS 4.0 RC 1 ESC/JAVA 2 Java 5 4 0.80 CHECK ‘N’ CRASH, DSD-CRASHER[14]
jdom 1.1 FINDBUGS Java 8.4 55 6.55 APM [21]
jdom revisions up to 1.1 FINDBUGS Java 9–13.1b 420c

HW09 [22]
jEdit Varies FINDBUGS, PMD, JLINT Java uk uk n/a ALERTLIFETIME [31]
Lame uk n/a C 27 n/a n/a ELAN, EFANH, and EFANV [7]
Link uk n/a C 14 n/a n/a ELAN, EFANH, and EFANV [7]
Linux 2.5.8 MC C uk uk n/a Z-RANKING [36]
Linux 2.4.1 MC C uk 640 n/a FEEDBACK-RANK [35]
Lucene 8/30/2004a

FINDBUGS, PMD, JLINT Java 37 1513c 40.89 HWP [32]
Memwatch uk n/a C 2 n/a n/a ELAN, EFANH, and EFANV [7]
Net-tools 1.46 ISA, RATS, ITS4, FLAWFINDER C 4.1 uk n/a ISA [34]
ngIRCd 0.8.1 UNNAMED Binary uk 1 uk INTFINDER [8]
openssh 2.2.1 UNNAMED Binary uk 1 uk INTFINDER [8]
org.eclipse. core.runtime 3.3.1.1 FINDBUGS Java 2.8 98 35.00 APM [21]
org.eclipse. core.runtime Revisions up to 3.3.1.1 FINDBUGS Java 2–15.5b 853c uk HW09 [22]
P2P Client uk UNNAMED Java 3.129 53 16.9 FIS [59]
php 5.2.5 UNNAMED Binary uk 1 uk INTFINDER [8]
PMD 4.2.4 UNNAMED Java uk uk uk FIS [59]
Program A uk QA C C 9 113 12.56 OAY98 [40]
Program B uk QA C C 40 173 4.33 OAY98[40]
Program C uk QA C C 126 1459 11.58 OAY98[40]
Program D uk QA C C 36 1213 33.69 OAY98[40]
Program E uk QA C C 44 1008 22.91 OAY98[40]
Program F uk QA C C 87 2810 32.30 OAY98[40]
Program G uk QA C C 80 779 9.74 OAY98[40]
Pure-ftpd 1.0.17a ISA, RATS, ITS4, FLAWFINDER C 25.2 uk n/a ISA [34]
python 2.5.2 UNNAMED Binary uk 1 uk INTFINDER [8]
rdesktop uk BOON C 17 uk uk AJ06 [1]
Reorder uk JLINT Java 0.044 2 45.45 META-HEURISTIC [44]
Scarab 12/10/2002a

FINDBUGS, PMD, JLINT Java 64 1483c 23.17 HWP [32]
slocate 2.7 UNNAMED Binary uk 1 uk INTFINDER [8]
Struts 2.1.6 UNNAMED Java uk uk uk FIS [59]
Struts 1.2.7 UNNAMED Java uk uk uk FIS [59]

(continued on next page)
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Table 11 (continued)

Name Version Static analysis Lang. KLOC # Alerts Alert density AAIT

TVoM uk QA C C 91 9740 107.03 BM08B[6]
TwoStage uk JLINT Java 0.052 2 38.46 META-HEURISTIC [44]
Uni2Ascii uk n/a C 4 n/a n/a ELAN, EFANH, and EFANV [7]
Wine 9/14/2004 RETURN VALUE CHECKER C uk 2860 n/a HISTORYAWARE [55]
Wronglock uk JLINT Java 0.038 3 78.95 META-HEURISTIC [44]
wu-ftpd 2.5.0 ISA, RATS, ITS4, FLAWFINDER C 12.4 uk n/a ISA [34]
wzdftpd uk BOON C uk uk n/a AJ06 [1]
zgv 5.8 UNNAMED Binary uk 11 uk INTFINDER [8]

� Numbers are for build 105, the last build studied.
a Date of revision n/2.
b Size at the latest revision.
c Alerts totals across all revisions.
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5.1.8. Model checking
Model checking is an analysis technique for checking the cor-

rectness of programs by verifying that a model of the program
meets certain requirements [24]. Model checking can explore all
abstractions of a model and are both sound and complete. How-
ever, a limitation of model checkers are the number of states that
can be generated when modeling a program. The state explosion
problem can make model checking too expensive to use. Directed
model checking, like [44], uses ASA alerts to direct model checking
to certain areas of the program.

5.2. AAIT evaluation methodology

In the selected studies, all of the alert prioritization techniques
were evaluated using an example (as defined in Ref. [46]) on one or
more subject programs. Table 10 summarizes the methodologies
used to evaluate AAITs in the selected studies. Table 6 identifies
which evaluation methodology was used for each AAIT. There is
no standard evaluation methodology used to evaluate AAITs in
the literature. Each of the evaluation methodologies have their
strengths and weaknesses for evaluating AAIT. The remainder of
this section discusses the evaluation methodologies used in the se-
lected studies.

5.2.1. Baseline comparison
Eleven of the selected studies used a standard baseline for eval-

uation (e.g. benchmarks, comparison with other AAITs, random
and optimal comparison, or train and test), which are discussed
in later sections. Two studies [7,31] used a non-standard baseline
for evaluation. The ALERTLIFETIME AAIT prioritized alert types by life-
time, and were evaluated against the ASA tool’s ordering of alerts
[31]. The ELAN, EFANH, and EFANV AAIT prioritize alerts by their execu-
tion likelihood and the prioritizations were compared to the actual
execution likelihood as generated by an automated test suite [7].
INTFINDER [8] is evaluated by running the tool on code containing
known vulnerabilities.

5.2.2. Benchmarks
Benchmarks provide an experimental baseline for evaluating

software engineering theories, represented by techniques (e.g.
AAIT), in an objective and repeatable manner [48]. A benchmark
is defined as ‘‘a procedure, problem, or test that can be used to
compare systems or components to each other or to a standard’’
[26]. Benchmarks represent the research problems of interest and
solutions of importance in a research area through definition of
the motivating comparison, task sample, and evaluation measures
[47]. The task sample can contain programs, tests, and other arti-
facts dependent on the benchmark’s motivating comparison. A
benchmark controls the task sample reducing result variability,
increasing repeatability, and providing a basis for comparison
[47]. Additionally, successful benchmarks provide a vehicle for col-
laboration and commonality in the research community [47].

5.2.3. Comparison to other AAIT
Comparing a proposed AAIT to other AAIT in literature provides

another type of baseline. For the best comparisons, the model
should exist in the same domain and be run on the same data sets.
Model comparison can show the underlying strengths and weak-
nesses of the models presented in literature and provides addi-
tional efficacy about the viability of AAITs.

5.2.4. Random and optimal comparison
Random and optimal orderings of alerts are baselines used to

compare AAITs prioritizations [35,36] and may be used in bench-
marks (as discussed in Section 5.2.2). The optimal ranking is an
ordering of alerts such that all actionable alerts are at the top of
the ranking [21,35,36]. A random ranking is the random selection
of alerts without replacement [21,35,36]. The random ordering
provides a ‘‘probabilistic bounded time for an end-user to find a
bug, and represents a reasonable strategy in the absence of any
information with which to rank reports’’ [35]. Randomness can
be used in other techniques, like the generation of a random
depth-first search as a comparison baseline for the META-HEURISTIC

[44] technique. Only random and optimal comparisons reported
in the selected study were discussed in this SLR.

5.2.5. Train and test
Train and test is a research methodology where some portion of

the data are used to generate a model and the remaining portion of
the data are used to test the accuracy of the model at predicting or
classifying the instances of data [56]. For models that use the pro-
ject history, the training data may come from the first i revisions of
source code [22,32]. The test data then is the remaining i + 1 to n
revisions [22,32]. For models that are generated by considering a
set of alerts, the confidence in the accuracy of the models is in-
creased by randomly splitting the data set into train and test sets
many (e.g. 100 splits) times [58].

5.2.6. Other
Selected studies that do not use one of the above high-level re-

search methodologies, have been grouped together into the other
category. The comparative metrics specific to the studies classified
as ‘other’ are discussed in the AAIT subsections.

5.3. Subject programs

Each of the selected studies provides some level of experimen-
tal validation. In Sections 6–8, we compare and consolidate the
results presented in the selected studies; however, the synthesis
of results is limited by the different domains, programming



Fig. 1. Classification table (adapted from Zimmerman et al. [61]).
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languages, and ASA used in the studies. The key for synthesizing
data between selected studies is a common set of subject pro-
grams, which implies a common programming language, and
ASA(s).

The subject programs used for evaluation of an AAIT varied
across the selected studies. Most subject programs are distinct be-
tween selected studies. Authors with more than one selected study
tended to use the same subject programs across their studies;
however, the version of the subject programs varied by study. Ta-
ble 11 lists the subject programs used in the selected studies and
key demographic metrics of the subject programs. Forty-eight dis-
tinct subject programs were explicitly used to evaluate the AAITs
in the 21 studies; however, 55 subject programs are listed to show
how versions differed across AAIT evaluations. Two of the selected
studies did not mention the subject programs for AAIT evaluation
explicitly [30,38].

Subject program demographic metrics consist of those metrics
used for sizing and ASA. Specifically, we are interested in the size
of the subject program in terms of KLOC, the number of alerts gen-
erated, the ASA run, and the language of the subject programs.
These data, if available, are summarized in Table 11. For each of
the subject programs with information about size (in KLOC) and
the number of alerts, we can measure the alert density for a subject
program. However, the alert density varies by ASA tool and the
specific ASA configuration the study authors choose to run on their
subject programs.
5.4. Metrics for the evaluation of classification AAIT

Alert classification techniques predict whether alerts are action-
able or unactionable. We define the key metrics associated with
alert classification below:

� True positive classification (TP) [6,21,22,40,61]: Classifying an
alert as actionable when the alert is actionable.
� True negative classification (TN) [21,22,61]: Classifying an alert

as unactionable when the alert is unactionable.
� False positive classification (FP) [21,22,34,61]: Classifying an alert

as actionable when the alert is actually unactionable.
� False negative classification (FN) [21,22,34,61]: Classifying an

alert as unactionable when the alert is actually actionable.

We are focusing on the classification of alerts identified by the
static analysis tool; therefore, we are not considering software
anomalies not found by static analysis tools. Fig. 1 is a classification
table that model the metrics discussed above.The following met-
rics evaluate the classification of static analysis alerts:
� Precision [1,21,22,32,55,56]: The proportion of correctly classi-

fied anomalies (TP) out of all alerts predicted as anomalies
(TP + FP). The precision calculation is presented in Eq. (1).
Precision ¼ ðTPÞ=ðTP þ FPÞ ð1Þ

� Recall (also called true positive rate or sensitivity) [21,22,55,56]:
The proportion of correctly classified anomalies (TP) out of all
possible anomalies (TP + FN). The recall calculation is presented
in Eq. (2).

Recall ¼ ðTPÞ=ðTP þ FNÞ ð2Þ

� Accuracy [7,21,22,56]: The proportion of correct classifications
(TP + TN) out of all classifications (TP + TN + FP + FN). The accu-
racy calculation is presented in Eq. (3).

Accuracy ¼ ðTP þ TNÞ=ðTP þ TN þ FP þ FNÞ ð3Þ

� False positive rate [55,56]: The proportion of unactionable alerts
that were incorrectly classified as actionable (FP) out of all
unactionable alerts (FP + TN). The equation for false positive
rate is presented in Eq. (4).

False positive rate ¼ ðFPÞ=ðFP þ TNÞ ð4Þ

� Number of test cases generated [1,14]: The number of automated
test cases generated by hybrid techniques that generate test
cases. This metric is only appropriate to use with those AAITs
that utilize dynamic detection techniques.
� Error density [44]: The probability of finding a fault in a pro-

gram. The probability is ‘‘the ratio of the number of [fault] dis-
covering trials over the total number of trials executed for a
given model and technique’’ [44].

5.5. Metrics for the evaluation of prioritization AAIT

Prioritization AAITs can be evaluated using classification met-
rics (discussed in Section 5.4) if a threshold is specified that divides
the alerts into actionable and unactionable sets. Other metrics are
also used to evaluate prioritization AAITs. Several correlation tech-
niques compare an AAIT’s prioritization of alerts with a baseline
prioritization like an optimal ordering of alerts:

� Spearman rank correlation [21]: Measuring the distance
between the rank of the same alert between two orderings. A
correlation close to 1.0 implies that the two orderings are very
similar.
� Wall’s unweighted matching method [54]: Measures how closely

the alerts prioritized by the AAITs match the actual program
executions.
� Pearson correlation coefficient, r [6,31,49]: The correlation coeffi-

cient is a measure of the strength of association between inde-
pendent and dependent variables.
� Chi-square test [55]: Comparison of false positive rates to

see if the use of an AAIT produces a statistically significant
reduction.
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� Area under the curve (AUC) [21,56,58]: A measure of the area
under the graph of the number or percentage of actionable
alerts identified over time. The AUC may be measured for many
graphs such as the receiver operator characteristic (ROC) curve
[56,58] and anomaly detection rate curve [21]. A ROC curve
plots the percentage of true positives against the percentage
of false positives at each alert inspection. The anomaly detec-
tion rate curve plots the number of anomalies or faults detected
against the number of alerts inspected.
� Number of alerts inspected before all actionable alerts identified

[35,36]: The number of alert inspections required to identify
all actionable alerts.
� Prioritization technique’s improvement over random [35,36]: The

ratio of the prioritization’s AUC and the random ordering’s
AUC over all or some percentage of possible alerts.

6. Classification AAITs

Classification AAITs divide alerts into two groups: alerts likely
to be actionable and alerts likely to be unactionable [21]. The sub-
sections below describe the 10 out of 21 AAITs from the selected
studies that are classification AAITs.

For each AAIT, we report the paper describing the AAIT, the
input to the AAIT in the form of artifact characteristics used
(described in Section 4); the ASA used; programming language
the ASA analyzes; AAIT type (described in Section 5.1); and re-
search methodology (described in Section 5.2). If no name is
provided for the AAIT in the selected study, we create a name
based on the first letter of the first three authors’ last names
and the last two digits of the year of publication. The AAITs
are listed in order of publication year and then the first author’s
last name.
6.1. OAY98

� Study: Ogasawara et al. [40]
� Artifact characteristics: AC
� ASA: QA C

7

� Language: C
� AAIT type: Alert type selection (5.1.1)
� Research methodology: Other (5.2.6)

Objective: Ogasawara et al. [40] present a method for using ASA
during development whereby only the alert types that identify the
most actionable alerts are used.

AAIT method: The static analysis team, using their experiences
with ASA, identified 41 key alert types out of 500 possible alert
types from the QA C tool. Removing alert types that are not com-
monly indicative of anomalies reduced the reported unactionable
alerts.

Method limitations: One of the unstated limitations of OAY98 is
that not all of the alerts of the types removed from the analysis
may be unactionable (i.e. actionable alerts were suppressed result-
ing in a false negative). For the alert types that remain in the anal-
ysis, there may still be many unactionable alerts that are
generated.

Evaluation methodology: Ogasawara et al. evaluate their tech-
nique by investigating the number of alerts and the effectiveness
of the alert’s messages.

Evaluation subjects: The OAY98 technique was evaluated on se-
ven subject programs, described in Table 11.
7
QA C is a static analysis tool developed by programming research (http://

www.programmingresearch.com/qac_main.html).
Evaluation metrics: The evaluation metrics were the number of
alerts, lines of code, alert density, and the number of alerts that
were fixed.

Evaluation results: The overall result from Ogasawara et al.’s
study is that static analysis is an effective technique for identifying
problems in source code. The teams performed code reviews in areas
of code containing alerts and found that using static analysis results
helped guide code review efforts. Eighty-eight of 250 alerts (35%)
were associated with areas of code that were inspected and cor-
rected, implying the alerts were actionable. Thirty percent of those
actionable alerts were found to be serious problems in the system.
6.2. SCAS

� Study: Xiao and Pham [57]
� Artifact characteristics: CC
� ASA: UNSPECIFIED

� Language: C
� AAIT type: Contextual information (5.1.2)
� Research methodology: Other (5.2.6)

Objective: Xiao and Pham [57] use contextual information about
the code under analysis to extend a static analysis tool.

AAIT method: Unactionable alert reduction was added to three
different alert detectors of an unspecified ASA tool: (1) memory leak,
(2) missing break, and (3) unreachable code. The memory leak detec-
tor keeps track of pointers, especially to global variables, at the func-
tion level, and searches for memory leaked specifically by local
pointers. If a local pointer does not have a memory leak, then the
alert is unactionable and is not reported to the developer. The miss-
ing break detector uses belief analysis. Belief analysis uses the source
code to infer the developer’s beliefs about software requirements.
The beliefs inferred from the context of the source code are com-
bined with a lexical analysis of the comments to determine if missing
break alerts are actionable or unactionable. The unreachable code
detector maintains a database of patterns that suggest unreachable
code. Alerts reported about unreachable code may be compared with
the patterns in the database. Additionally, any unreachable code
alert suppressed by the developer in the user interface of SCAS is trans-
formed into the constituent pattern and recorded in the database.

Method limitations: No limitations were explicitly provided by
Xiao and Pham.

Evaluation methodology: SCAS was applied to three branches or
projects and the number of generated alerts and the time for anal-
ysis were analyzed and compared.

Evaluation subjects: The evaluation subjects were three
branches or projects, which are listed in Table 11.

Evaluation metrics: The following evaluation metrics were used:
number of files, total number of generated alerts, and number of
filtered alerts.

Evaluation results: The SCAS AAIT suppresses 33% of the generated
alerts.
6.3. HISTORYAWARE

� Study: Williams and Hollingsworth [55]
� Artifact characteristics: CC, SCR
� ASA: RETURN VALUE CHECKER

� Language: C
� AAIT type: Mathematical and statistical models (5.1.5)
� Research methodology: Other baseline comparison (5.2.4)

Objective: Williams and Hollingsworth [55] use source code
repository mining to drive the creation of an ASA tool and to im-
prove the prioritized listing of alerts.

http://www.programmingresearch.com/qac_main.html
http://www.programmingresearch.com/qac_main.html
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AAIT method: Adding a RETURN VALUE CHECKER on a function call was
a common bug fix in the Apache httpd8 source code repository. Iden-
tifying locations where a return value of a function is missing a check
is automated via an ASA tool. Alerts associated with the called func-
tion are grouped together, and the called functions are ranked using
the HISTORYAWARE prioritization technique. HISTORYAWARE first groups
functions by mining the software repository for instances where
the function call’s return value had a check added, closing an alert
for an earlier version. Next, the current version of source code is con-
sidered by counting the number of times a return value of a function
is checked. The functions are prioritized by the count of checked
functions. If the return value of a function is checked most of the time,
then the prioritization of that function is high, indicating that in-
stances where the return value is not checked are likely actionable.
However, if the return value of a function is almost never checked,
then the alerts are likely unactionable. When the return value of a
called function is always or never checked, the tool does not alert
the developer because there are no inconsistencies.

Method limitations: One limitation of the tool is that CVS does
not track the versions of the libraries associated with a project,
which means that an earlier revision may not build properly with-
out the correct library. Additionally, CVS is limited in identifying
moved files, directory renames, and interleaving between users,
which reduces the effectiveness of the AAIT.

Evaluation methodology: A case study compares a NAÏVERANKING of
the alerts based on the current version of code (e.g. the contempo-
rary context) and the HISTORYAWARE prioritization.

Evaluation subjects: HISTORYAWARE was evaluated using two C pro-
grams: Wine9 and Apache httpd,10 both of which are listed in
Table 11.

Evaluation metrics: The precision and recall of the classifications
are measured.

Evaluation results: The precision of the top 50 alerts generated
by static analysis is 62.0% for HISTORYAWARE and 53.0% for NAÏVERANKING

for Wine and 42.0% for HISTORYAWARE and 32.0% for NAÏVERANKING for
Apache httpd. The HISTORYAWARE ranking has a false positive rate be-
tween approximately 0% and 70% across the contemporary context
of the alerts. The NAÏVERANKING false positive rate is between 50% and
100% on the same contemporary context.
6.4. AJ06

� Study: Aggarwal and Jalote [1]
� Artifact characteristics: CC
� ASA: BOON [52]
� Dynamic analysis: STOBO [19]
� Language: C
� AAIT type: Contextual information (5.1.2)
� Research methodology: Other (5.2.6)

Objective: Aggarwal and Jalote [1] identify potential buffer over-
flow vulnerabilities, as represented by the strcpy library function
in C source code, quickly and effectively through a combination
of static and dynamic analysis.

AAIT method: The ASA tool, BOON [52], has difficulty in under-
standing aliased pointers, which may lead to BOON missing buffer
overflow vulnerabilities. Dynamic tools, like STOBO [19], can find
vulnerabilities where static analysis fails. Dynamic analysis
8 Apache httpd is open source server software that may be found at: http://
httpd.apache.org/.

9 Wine is an open source program for running Windows applications on Linux,
Unix, and other similar operating systems. Wine may be found at: http://
www.winehq.org/.

10 Apache httpd is an open source http web server. Apache httpd may be found at:
http://httpd.apache.org/.
requires the generation of test cases, which can increase the time
required to use the tool. AJ06 combine static and dynamic analyses
to identify areas of code that require buffer overflow analysis and
marks the code where pointers are aliased and where they are
not. The former areas of code necessitate dynamic analysis, while
buffer overflow vulnerabilities can be found by ASA in the latter
code areas.

Method limitations: The AJ06 technique is limited by several of
the C language features that are difficult to analyze. Specifically,
performance may be impacted by marking strcpy functions. Addi-
tionally, structure element aliasing is incorrectly handled.

Evaluation methodology: The study of the AJ06 AAIT does not de-
fine a specific research methodology for the experiments; however,
we can infer a comparison of the hybrid approach to the perfor-
mance of the individual static and dynamic approaches. The goal
of the analysis is to determine if there is an increase in the accuracy
of the static analysis alerts generated and a reduction in test cases
(and therefore runtime overhead) for the dynamic analysis. The re-
sults of the hybrid analysis are manually audited.

Evaluation subjects: AJ06 is run on subject programs rdesktop11

and wzdftpd,12 which are described in Table 11.
Evaluation metrics: The evaluation metrics are accuracy and test

case reduction.
Evaluation results: The analysis of wzdftpd showed that only

37.5% of the dangerous strcpy functions in the code required dy-
namic analysis. The tool for identifying aliased pointers, AJ06, is lim-
ited when structured elements are aliased. Additionally, the buffer
overflow vulnerability is not restricted to strcpy functions only.
Therefore, the technique can only identify a subset of buffer over-
flow vulnerabilities.
6.5. BM08B

� Study: Boogerd and Moonen [6]
� Artifact characteristics: AC, CC, SCR, BDB
� ASA: QA C and custom front end, QMORE

� Language: C
� AAIT type: Graph theory (5.1.3)
� Research methodology: Other (5.2.6)

Objective: Boogerd and Moonen [6] present a technique for eval-
uating the actionable alert rate for ASA alert types that deal with
style issues generated by the ASA tool QA C.

AAIT method: The actionable alert rate for an alert type is the
number of actionable alerts for the alert type divided by all alerts
generated for the alert type. They evaluate two prioritization tech-
niques: temporal coincidence and spatial coincidence. Temporal
coincidence associates alerts with code changes. However, just be-
cause an alert is removed due to a code change does not mean that
the alert was associated with the underlying anomaly fixed by the
code change. Spatial coincidence reduces the noise from temporal
coincidence by assessing the type of change made that removed an
alert. Alerts are considered actionable if they are associated with
changes due to fixing faults rather than other source code changes.
The requirement for generating spatial coincidence is that changes
in the source code that are checked into the repository should be
associated with bugs listed in the bug database.

A version history graph is created for each file and is annotated
with code changes on each edge. Alerts closed due to fixing a fault
increment the alert count. After all versions of a file are evaluated,
the remaining open alerts contribute to the overall count of
11 rdesktop is a remote desktop client that may be found at: http://www.rdesk-
top.org/.

12 wzdftpd is a FTP server that may be found at: http://www.wzdftpd.net/trac.

http://httpd.apache.org/
http://httpd.apache.org/
http://www.winehq.org/
http://www.winehq.org/
http://httpd.apache.org/
http://www.rdesktop.org/
http://www.rdesktop.org/
http://www.wzdftpd.net/trac


13 JBoss JMS is the messaging service component of the JBoss J2EE application
server. JBoss may be found at: http://www.jboss.org.

14 Groovy is a dynamic programming language for the Java Virtual Machine. Groovy
may be found at: http://groovy.codehaus.org/.

15 Information about Apache’s XML Security module may be found at: http://
santuario.apache.org/.
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generated alerts. The actionable alert rate values can be used to
prioritize alert types in future versions of software.

Method limitations: Boogerd and Moonen provide the follow-
ing limitations to their work. The fault density measure lags be-
hind the actual fault density due to differences between when a
fault is introduced and reported. Major changes in file composi-
tions may cause the correlations between rules with positive
and negative relationships to change. Conservative estimates
are used when calculating spatial coincidence to prevent under-
estimation. Since only one example is used, the results may not
generalize to other software projects. Finally, technical problems
may occur when building a project between platforms and when
running ASA if the ASA generates an alert that can never
happen.

Evaluation methodology: QA C reports alerts where C code vio-
lates the MISRA-C style rules. The experiment considers 214
revisions of an embedded mobile TV software (TVoM) project
developed between August 2006 until June 2007. A bug database
tied together the fault-fixes and alert closures used for calculat-
ing the actionable alert rate. Information about the bug reports
were mined from the bug database, and had to meet the follow-
ing requirements: (1) reports were a bug and not a functional
change request; (2) associated with the C portions of the
project; and (3) reports that were closed on or before June
2007.

Evaluation subjects: BM08B was evaluated using TV on Mobile
(TVoM), described in Table 11.

Evaluation metrics: For each alert type, the actionable alert rate
was calculated.

Evaluation results: The violation density and fault densities were
plotted against each other with a negative trend line showing that
fewer MISRA-C violations suggested a higher rate of faults. True
positive rates were reported for 72 of the 141 possible MISRA-C
rules. Boogerd and Moonen [6] found that ‘‘the true positive rates
indicate that 15 out of 72 rules outperform a random predictor
with respect to selecting fault-related lines.’’

6.6. CHECK ‘N’ CRASH and DSD-CRASHER

� Study: Csallner et al. [14]
� Artifact characteristics: DA
� ASA: ESC/JAVA [17]
� Dynamic Analysis: DAIKON [16] and JCRASHER [12]
� Language: Java
� AAIT type: Dynamic Detection (5.1.4)
� Research methodology: Other model comparison (5.2.2)

Objective: Csallner et al. [14] seek to ‘‘measure DSD-CRASHER

against is a fully automated tool for moder object-oriented lan-
guages that finds bugs but produces no false bug warnings.’’

AAIT method: DSD-CRASHER incorporates a three step dynamic–sta-
tic–dynamic process for identifying actionable static analysis
alerts. The first dynamic step is utilizes DAIKON [16] which generates
program invariants via execution of tests. These invariants are then
used to refine the ASA step. ASA is conducted via the ESC/JAVA 2 [17]
tool, which identifies locations for potential Java runtime excep-
tions. The alerts generated by ESC/JAVA 2 are input to JCRASHER [12],
which automatically generates test cases with the goal of crashing
the program and providing a concrete failure path to the runtime
exception identified by ESC/JAVA 2.

Method limitations: For effective generation of invariants for the
first dynamic step, DAIKON requires a set of regression tests that pro-
vide full coverage. The addition of DAIKON also reduces the scalabil-
ity of the project. A final limitation is that DSD-CRASHER can only
identify runtime exceptions and not other faults that may cause
an undesired result.
Evaluation methodology: The evaluation of DSD-CRASHER explores
the following questions: ‘‘(1) Can DSD-CRASHER eliminate some false
bug warnings CHECK ‘N’ CRASH produces? And (2) Does DSD-CRASHER find
deeper bugs than similar approaches that use a light weight bug
search?’’ [14].

Evaluation subjects: JBoss JMS13 and Groovy14 are the subject
programs for comparing CHECK ‘N’ CRASH with DSD-CRASHER, and details
are provided in Table 11.

Evaluation metrics: DSD-CRASHER is evaluated by comparing the
runtime and number of generated reports.

Evaluation results: When using DSD-CRASHER one fewer unaction-
able alert was reported on JBoss JMS in comparison with CHECK ‘N’

CRASH. DSD-CRASHER reduced the number of reported unactionable
alerts by seven when analyzing Groovy in comparison with CHECK

‘N’ CRASH. Additionally, a comparison of DSD-CRASHER with ECLAT [42]
found three class cast exceptions that ECLAT did not find for JBoss
JMS and two additional alerts that ECLAT missed when analyzing
Groovy. A final experiment investigated how well the ASA underly-
ing CHECK ‘N’ CRASH and DSD-CRASHER, ESC/JAVA 2 [17], finds bugs seeded in
open-source projects. The experiment considered three versions of
Apache XML Security15 containing 13–20 seeded bugs. Approxi-
mately half of the seeded bugs are unable to be found by ESC/JAVA 2,
and the remainder that could be associated with alerts generated
by ESC/JAVA 2 had no associated failing test cases generated by
DSD-CRASHER.
6.7. HW09

� Study: Heckman and Williams [22]
� Artifact characteristics: AC, CC, SCR
� ASA: FINDBUGS [25]
� Language: Java
� AAIT type: Machine learning (5.1.6)
� Research methodology: Benchmark (5.2.3)

Objective: Heckman and Williams [22,23] present a process for
using machine learning techniques to identify key artifact charac-
teristics and the best models for classifying static analysis alerts for
specific projects.

AAIT method: The process consists of four steps: (1) gathering
artifact characteristics about alerts generated from static analysis;
(2) selecting important, unrelated sets of characteristics; (3) using
machine learning algorithms and the selected sets of characteris-
tics to build models; and (4) selecting the best models using eval-
uation metrics.

Method limitations: The limitations to this process concern
choosing the appropriate artifact characteristics and models for
the classification of static analysis alerts.

Evaluation methodology: The machine learning-based model
building process is evaluated on two FAULTBENCH [21] subject pro-
grams. The Weka [56] machine learning tool is used to generate
artifact characteristic sets and classification models. The models
are generated and evaluated by using 10 tenfold cross validations.
Candidate models are created from 15 different machine learning
techniques from five high-level categories: rules, trees, linear mod-
els, nearest neighbor models, and Bayesian models.

The hypothesis that static analysis alert classification models
are program-specific is evaluated by comparing the important arti-
fact characteristics and machine learning models.

http://www.jboss.org
http://groovy.codehaus.org/
http://santuario.apache.org/
http://santuario.apache.org/
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Evaluation subjects: The models are generated for two of the
FAULTBENCH subject programs: jdom16 and runtime17.

Evaluation metrics: Heckman and Williams reported the accu-
racy, precision, and recall of the generated models.

Evaluation results: Only 50% of the selected artifact characteris-
tics were common between the two projects. Additionally, models
generated for jdom had 87.8% average accuracy while models gen-
erated for runtime had 96.8% average accuracy. The average recall
and precision for jdom was 83.0% and 89.0%, respectively and
99.0% and 98.0% for runtime. The two best machine learning mod-
els were a version of nearest neighbor for jdom and decision tree
for runtime, and, together with the attribute selection results,
demonstrate that alert classification models are likely program-
specific.

6.8. META-HEURISTIC

� Study: Rungta and Mercer [44]
� Artifact characteristics: CC
� ASA: JLINT [2]
� Language: Java
� AAIT type: Model checking (5.1.8)
� Evaluation Method: Random and optimal comparison (5.2.4)

Objectives: Rungta and Mercer [44] combine ASA and directed
model checking to identify concurrency problems in Java pro-
grams. ASA, specifically JLINT, identifies potential areas of code
where a concurrency error might exist. A META-HEURISTIC prioritizes
the states in a model by analyzing the possible input sequences
to the given state. The heuristic is used to drive identification of ac-
tual concurrency errors.

AAIT method: ASA provides a list of potential concurrency errors
in a given program. A list of manually generated input sequences
located near the ASA alert (i.e. a series of read and write operations
that may cause a race condition) inform the META-HEURISTIC. The META-

HEURISTIC is a value assigned to every state in the program and is the
‘‘number of locations in the input sequence that have been encoun-
tered along the current execution path.’’ A secondary heuristic
moves the analysis along by breaking ties between states that have
the same META-HEURISTIC value. Three secondary heuristics are con-
sidered: (1) a polymorphic distance heuristic (PFSM) which calcu-
lates the distance between program locations; (2) a random
heuristic; and (3) prefer-thread heuristic, which provides capabil-
ity for a user to identify threads that they prefer to be analyzed.
The greedy depth-first search algorithm mimics testing multi-
threaded programs by checking the best child nodes (as measured
by the META-HEURISTIC) for errors, until all nodes in the model have
been checked. If an error is identified, the analysis has found an ac-
tual concurrency error and the alert generated by ASA is
actionable.

Method limitations: No limitations are expressly listed, but the
manual selection of input sequences to the META-HEURISTIC process
is a threat to internal validity of the process.

Evaluation methodology: Rungta and Mercer evaluate their
META-HEURISTIC technique on six multi-threaded Java programs. They
compare their META-HEURISTIC to a random depth-first search. Addi-
tionally, three different secondary heuristics are considered. In
the evaluation, 100 trials of each search are run to mitigate the ran-
domness associated with backtracking during the depth-first
searches. For the analysis, the alerts were generated using JLINT

and Java Pathfinder [51] served as the model checker.
16 jdom is an XML library, and may be found at: http://www.jdom.org.
17 Runtime is the org.eclipse.runtime package from the Eclipse project. Information

on Eclipse may be found at: http://eclipse.org/.
Evaluation subjects: Six evaluation subjects were used: three
from a benchmark created by IBM Research Lab in Haifa and three
from classical concurrency problems. The subjects are described in
Table 12.

Evaluation metrics: Rungta and Mercer used the error density
metric to evaluate their META-HEURISTIC against a random depth-first
search. Additionally, the different secondary heuristics were evalu-
ated against each other by the number of states in the generated
model.

Evaluation results: The META-HEURISTIC technique performed better
than the random depth-first search for all trials. Additionally, the
PFSM secondary heuristic performed the same as or better than
the other secondary heuristics for all trials. The PFSM secondary
heuristic reported an error density of 1.0 for all trials. In most trials,
PFSM performed better in the number of states generated when
compared to the other secondary heuristics.

6.9. INTFINDER

� Study: Chen et al. [8]
� Artifact characteristics: DA
� ASA: UNSPECIFIED

� Language: C
� AAIT type: Dynamic detection (5.1.7)
� Evaluation Method: Other baseline comparison (5.2.1)

Objectives: Chen et al. [8] propose an approach to find integer
faults in binary programs via a combination of static and dynamic
analyses to achieve the following: (1) find additional integer faults
beyond integer overflow, (2) recreate precise types during decom-
pilation, (3) lower the number of ASA generated false positives, and
(4) reduce the time to run dynamic analysis while also minimizing
false negatives.

AAIT method: INTFINDER decompiles binary executables into a
form of static single assignment (SSA). The decompiler’s type anal-
ysis is not sufficient; therefore, an additional type analysis is done
based on trends observed when mining the Common Vulnerability
and Exposures (CVE) database.18 The type analyses identify integer
alerts associated with memory allocation, array indices, memory
copies, and signed upper bound checks. With the additional type
information, alerts are generated for a set of instructions where
there are potential integer faults. Taint analysis and a dynamic
detection tool identify actual integer faults from the alerts.

Method limitations: The limitations of INTFINDER are associated
with decompilation, dynamic detection, and test input creation.
Not all functions are decompiled, which may lead to incomplete
analyses. Additionally, decompilation has any limitations of the
underlying tool (in this case Boomerang19). Dynamic detection lim-
itations are associated with how semantics are understood. Most lo-
gic operations were not considered due to difficulty in identifying
integer faults. The final limitation is that the test inputs are from
known vulnerabilities which can only identify known vulnerabilities.

Evaluation methodology: INTFINDER was evaluated on six programs
with known integer vulnerabilities reported in the CVE. First, the
preciseness of the ASA portion of INTFINDER was evaluated by com-
paring the number of instructions with a precise type to the num-
ber of suspect instructions. infinder was also evaluated by how
well the tool identified integer faults and by how well the tool
performed.

Evaluation subjects: Six evaluation subjects were used. The sub-
jects have known vulnerabilities as reported in the CVE.
18 The Common Vulnerabilities and Exposures database lists known vulnerabilities.
The CVE may be found at: http://cve.mitre.org/.

19 Boomerang decompiles programs for the x86 platform. Boomerang may be found
at: http://boomerang.sourceforge.net/.

http://www.jdom.org
http://eclipse.org/
http://cve.mitre.org/
http://boomerang.sourceforge.net/
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Evaluation metrics: INTFINDER was evaluated using the following
metrics: preciseness of type analysis, number of false positives,
and time to execute.

Evaluation results: An average preciseness of 97.1% is reported
demonstrating a reduction in false positives. INTFINDER was able to
find all 16 of the reported vulnerabilities with no false positives.
Additionally, INTFINDER found a new bug in one of the programs.
Finally, performance was measured comparing the use of Pin alone
with INTFINDER. Pin had a 3.7� average overhead and INTFINDER had an
4.4� average overhead.

6.10. FIS

� Study: Yu et al. [59]
� Artifact characteristics: CC
� ASA: UNSPECIFIED

� Language: Java
� AAIT type: Contextual information (5.1.2)
� Evaluation Method: Other (5.2.6)

Objective: Yu et al. [59] propose using a fuzzy inference system
(FIS) to identify the areas of a program under analysis that are more
suited for ASA or model checking; therefore reducing ASA false
positives and model checking’s state explosion problem.

AAIT method: The FIS process consists of four steps: (1) classifica-
tion of security faults, extracting keyword information about the
faults, and clustering the program into smaller units for faster anal-
ysis; (2) fuzzy inference that maps the keywords to Java constructs
and applies the mapping to determine which of type of analysis to
use; (3) running ASA on the portions of the code identified to work
best with ASA; and (4) running model checking on the portions of
the code identified to work best with model checking.

Method limitations: The ASA used in FIS had a high performance
overhead, which is a limitation of the technique. Yu et al. proposed
four techniques to reduce the performance overhead including par-
allel computing, sorting of the generated abstract syntax trees to
take advantage of similarities, extracting abstract syntax trees so
that one rule can be loaded at a time, and load similar rules
together.

Evaluation methodology: FIS is implemented as an Eclipse plugin.
Evaluation of FIS consisted of measuring how well the tool detected
injected faults and how long the tool ran. FIS was compared with
model checking and ASA run alone.

Evaluation subjects: Yu et al. evaluated FIS on a peer-to-peer cli-
ent with injected vulnerabilities. Additionally, four other open-
source projects were used as subject programs as described in
Table 11.

Evaluation metrics: FIS was evaluated using the following metrics:
number of faults found, execution time, and time distributions.

Evaluation results: In the peer-to-peer client with seeded faults,
FIS identified 73 or the 74 seeded vulnerabilities. Model checking
alone identified 27 and ASA alone identified 53. The hybrid ap-
proach of FIS performed better than the individual parts alone.
The performance of FIS was slower than ASA, but faster than model
checking, and the performance enhancements to ASA generated on
average a 50% improvement. A majority of the time to run FIS was
associated with model checking followed by the clustering algo-
rithm. A comparison of the faults found by the ASA and model
checking portions of FIS show that the two techniques are
complementary.

6.11. Classification results discussion

Ogasawara et al. [40] first demonstrate that ASA is useful for
identifying problems in source code and that minimizing the alerts
reported by ASA through some filtering mechanism can increase
the effectiveness of using ASA. Ogasawara et al.’s work explains
the most basic AAIT: selection of alert types of interest from expe-
rience with the code base. Selection of 41 alert types of interest
leads to 83% reduction in reported alerts. CHECK ‘N’ CRASH, DSD-CRASHER

[14], and SCAS [57] were successful in reducing reported alerts on
evaluated subject programs through more programmatic reduction
techniques. DSD-CRASHER saw a 41.1% reduction in reported alerts
when compared to CHECK ‘N’ CRASH. However, the alert reduction pro-
vided by DSD-CRASHER missed one of the actionable alerts reported by
CHECK ‘N’ CRASH, which shows that DSD-CRASHER is not a safe technique.
SCAS averaged a 32.3% alert reduction across the three branches of
the subject program, but there is no discussion of FNs due to the
reduction. INTFINDER [8] used dynamic detection to correctly identify
instructions in binary executables that contained integer faults
with no false positives.

The AAIT proposed by Aggarwal et al. [1] and FIS [59] identifies
places in the code where dynamic analysis or model checking
should be used in place of static analysis, which could lead to a
reduction of reported alerts. Aggarwal et al. [1] did not report
any numerical results to support their hypothesis. Yu et al. [59]
found that ASA and model checking were complementary tech-
niques and found different types of faults. Rungta and Mercer
[44] used model checking in combination with ASA, but unlike
Yu et al., the alerts generated by ASA were used to guide model
checking rather than having model checking as a complementary
technique.

AAITs proposed by Boogerd and Moonen [6], Heckman and
Williams [22], and Williams and Hollingsworth [55] were evaluated
using precision, which is a measure of the number of actionable
alerts correctly identified out of all alert predicted as actionable.
The BM08B AAIT reported precision ranging from 5.0% to 13.0%,
which is lower than the precisions reported when using HISTORY-

AWARE and HW09 AAITs. HISTORYAWARE AAIT had a higher precision
than the NAÏVERANKING AAIT, but lower precision than HW09. Precision
is a metric commonly reported by many of the classification and
prioritization studies. The precision numbers for the above three
studies are summarized with the prioritization precision data in
Table 12.

The static analysis tools and subject program languages used
varied by study, which only allows for some general comparison
of the results. However, the overall results of classification studies
support the use of AAIT to classify actionable alerts.
7. Prioritization results

Prioritization AAITs order alerts by the likelihood an alert is an
indication of an actionable alert [21]. The subsections below de-
scribe 11 prioritization AAITs using a similar reporting template
used for the classification metrics in Section 6.

7.1. Z-RANKING

� Study: Kremenek and Engler [36]
� Artifact characteristics: CC
� ASA: MC [15]
� Language: C
� AAIT type: Mathematical and statistical models (5.1.5)
� Research methodology: Random and optimal comparison

(5.2.1)

Objective: Kremenek and Engler [36] proposed a statistical model
for prioritizing static analysis alerts.

AAIT method: Unlike most other ASA, the MC [15] tool reports
‘‘(1) the locations in the program that satisfied a checked property
[successful checks] and (2) locations that violated the checked
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property [failed checks]’’ [36]. The Z-RANKING statistical technique is
built on the premise that alerts (represented by failed checks),
identified by the same detector, and associated with many success-
ful checks are likely actionable. Additionally, a ‘‘strong hypothesis’’
proposes that unactionable alerts are associated with many other
unactionable alerts. The special case of the ‘‘strong hypothesis’’ is
called the ‘‘no-success hypothesis’’ and states ‘‘[alerts] with no
coupled successful checks are exceptionally unlikely [actionable
alerts].’’ The ‘‘no-success hypothesis’’ will not hold if the ‘‘strong
hypothesis’’ does not hold. A hypothesis test is run on the propor-
tion of successful checks out of all reports for a given grouping of
checks. Alerts are grouped by some artifact characteristic, called
a grouping operator, they all share (e.g. call site, number of calls
to free memory, function). The hypothesis testing allows for con-
sideration of the size of each possible grouping of checks, and
the final number is called a z-score. Alerts generated by static anal-
ysis are prioritized by their z-score.

Method limitations: A limitation of the Z-RANKING technique is that
the prioritization’s success depends on the grouping operator.

Evaluation methodology: The alert prioritization of the Z-RANKING

technique is compared to an optimal and random ranking of the
same alerts. A hypergeometric distribution is used to generate
the random ordering of alerts. The ranking of the alerts are
evaluated for three types of detectors in the MC ASA system:
lock error detectors (identify concurrency faults), free error
detectors (identify dereferences of freed memory), and string
format error detectors (identify faults associated with string
format libraries).

Evaluation subjects: Z-RANKING is run on two subject programs:
the Linux kernel and a commercial system, System X. Both are de-
scribed in Table 11.

Evaluation metrics: The cumulative number of bugs discovered
is plotted on a graph for each inspection.

Evaluation results: For the lock errors, 25.4–52.2% of the alerts
required inspection before finding all actionable alerts. For the free
errors and string format errors, the first 10% of the ranked alerts
found 3.3 times and 2.8 times the bugs than the first 10% of ran-
domly ordered alerts. A set of 1.0 � 105 randomly generated order-
ings of the alerts were compared to the Z-RANKING prioritization. At
most, 1.5% of the random orderings were better than alerts ordered
by Z-RANKING.

7.2. FEEDBACK-RANK

� Study: Kremenek et al. [35]
� Artifact characteristics: AC
� ASA: MC [15]
� Language: C
� AAIT type: Machine learning (5.1.6)
� Research methodology: Random and optimal comparison

(5.2.1)

Objective: Based on the intuition that alerts sharing an artifact
characteristic tend to be either all actionable or all unactionable,
Kremenek et al. [35] developed an adaptive prioritization algo-
rithm, FEEDBACK-RANK.

AAIT method: Each inspection of an alert by a developer adjusts
the ranking of uninspected alerts. After each inspection, the set of
inspected alerts are used to build a Bayesian Network, which mod-
els the probabilities that groups of alerts sharing a characteristic
are actionable or unactionable. Additionally, a value representing
how much additional information inspecting the report will pro-
vide to the model is generated for each alert. The information gain
value is used to break ties between alerts with the same probabil-
ity of being an anomaly.

Method limitations: No limitations are explicitly stated.
Evaluation methodology: Alerts ordered by FEEDBACK-RANK are
compared to the optimal and random ordering of the same
alerts. For the FEEDBACK-RANK algorithm, they consider two alert
prioritization schemes. In one prioritization scheme, there is no
information about already inspected alerts to build the model.
The model is updated as alerts are inspected, which represents
a project just starting to use ASA. The other prioritization
scheme considers a set of alerts as already inspected, and uses
the classifications from those alerts to build the initial model,
which could potentially lead to a better initial prioritization of
alerts. Three subsets of a subject’s alerts generate three models,
in particular the conditional probability distribution of the
Bayesian Network: the entire code base, self-trained, and a 90%
reserved model. For the Bayesian Network trained on the entire
code base, all of the generated alerts and their classifications
are used to build the conditional probability distribution of
the actionable and unactionable alerts. For the self-trained set,
the conditional probability distribution values are trained on the
set of alerts that are also ranked by the Bayesian Network.
Finally, in the 90% reserved model, 90% of the alerts are used
to train the conditional probability distributions for the Bayesian
Network and the model is tested on the remaining 10% of
alerts.

Evaluation subjects: FEEDBACK-RANK is evaluate on Linux and a com-
mercial system called System X, both of which are described in
Table 11.

Evaluation metrics: A custom metric, performance ratio, allows
for comparison between the rankings generated via FEEDBACK-RANK

technique and the random ordering of alerts. Performance ratio
is the ratio between random and the ranking techniques’ ‘‘average
inspection ‘delay’ or ‘shift’ per bug from optimal.’’

Evaluation results: The results show that all detectors in the MC

system show a 2–8� improvement of performance ratio over ran-
dom when using FEEDBACK-RANK. The self-trained model for the ASA
tool, Alock (part of the MC system), showed a 6–8� improvement
of performance ratio over random when seeded with partial
knowledge of some alert classifications.

7.3. JKS05

� Study: Jung et al. [30]
� Artifact characteristics: CC
� ASA: AIRIC [30]
� Language: C
� AAIT type: Machine learning (5.1.6)
� Research methodology: Train and test (5.2.5)

Objective: Jung et al. [30] use a Bayesian network to generate
the probability of an actionable alert.

AAIT method: The probability of an actionable alert is generated
given a set of 22 code characteristics (e.g. syntactic and semantic
code information like nested loops, joins, and array information).
The model is generated via inspected alerts generated on the Linux
kernel code and several textbook C programs. A user-specified
threshold limits the number of alerts reported to developers, which
reduces the set of alerts for a developer to inspect.

Method limitations: The artifact characteristics that serve as in-
put to the Bayesian network influence how well the model will
predict actionable alerts.

Evaluation methodology: The train and test technique was used
to evaluate the proposed prioritization technique. The alerts were
randomly divided into two equal sets. One set was used to train
a Bayesian model using the artifact characteristics (called symp-
toms) generated for each alert, and the model was tested on the
second set of alerts. The selection of training and test sets and
model building was repeated 15 times.



23 Lucene is a open-source search engine. Lucene may be found at: http://
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Evaluation subjects: Evaluation subjects were ‘‘. . . some parts of
the Linux kernel and programs that demonstrate classical algo-
rithms.’’ Therefore, the evaluation subjects are not specifically
listed in Table 11.

Evaluation metrics: Jung et al. report the accuracy, precision, and
recall of their analysis.

Evaluation results: The precision, recall, and accuracy are 38.7%,
68.6%, and 73.7%, respectively. Additionally, 15.17% of the unac-
tionable alerts were inspected before 50% of the actionable alerts
were inspected. Jung et al. observe that if the threshold for ‘‘true-
ness’’ is lowered, then all actionable alerts will be provided to
the user at the cost of an unknown additional amount of unaction-
able alerts.

7.4. ALERTLIFETIME

� Study: Kim and Ernst, 2007a [31]
� Artifact characteristics: AC and SRC
� ASA: FINDBUGS [25], PMD,20

JLINT [2]
� Language: Java
� AAIT type: Mathematical and statistical models (5.1.5)
� Research methodology: Other baseline comparison (5.2.4)

Objective: Kim and Ernst [31] prioritize alert types by the aver-
age lifetime of alerts sharing the type.

AAIT method: The premise is that alerts fixed quickly are more
important to developers. The lifetime of an alert is measured at
the file level from the time the first instance of an alert type ap-
peared until closure of the last instance of that alert type. Alerts
that remain in the file at the last studied revision are given a pen-
alty of 365 days added to their lifetime.

Method limitations: Lack of alert tracing when line and name
changes occur leads to error in the alert lifetime measurement
and the variance of lifetimes for an alert type is unknown. The
technique assumes that important problems are fixed quickly;
however, alerts that are fixed quickly may be the easiest bugs to
fix and not the most important alerts [31].

Evaluation methodology: Validation of the ALERTLIFETIME AAIT com-
pared the alerts ordered by lifetime with alerts ordered by the tool
specified severity.

Evaluation subjects: Kim and Ernst [31] evaluated their tech-
nique on Columba21 and jEdit,22 which are listed in Table 11.

Evaluation metrics: Kim and Ernst [31] reported the prioritiza-
tion and severity of the top 10 and bottom 10 alerts for each pro-
ject. Additionally, they reported the correlation between the alert
lifetimes for the two subject programs.

Evaluation results: Results showed that the alert lifetime priori-
tization did not correspond to the tool specified severity. Compar-
ison of the alert type lifetimes between the two subject programs
had a correlation coefficient of 0.218, which demonstrates that the
alert type ordering for one program may not be applicable for
another program.

7.5. HWP

� Study: Kim and Ernst, 2007b [32]
� Artifact characteristics: AC and SCR
� ASA: FINDBUGS [25], PMD, JLINT [2]
� Language: Java
� AAIT type: Mathematical and statistical model (5.1.5)
� Research methodology: Other baseline comparison (5.2.4)
20
PMD is ASA for Java: http://pmd.sourceforge.net/.

21 Columba is a open-source email client. Columba may be found at: http://
sourceforge.net/projects/columba/.

22 jEdit is an Java based text editor. jEdit may be found at: http://www.jedit.org/.
Objective: Kim and Ernst [32] use the commit messages and
code changes in the source code repository to prioritize alert
types.

AAIT method: The history-based warning prioritization (HWP)
weights alert types by the number of alerts closed by fault- and
non-fault-fixes. A fault-fix is a source code change where a fault
or problem is fixed (as identified by a commit message) while a
non-fault-fix is a source code change where a fault or problem is
not fixed, like a feature addition. The initial weight for an alert type
is zero. At each fault-fix the weight increases by an amount, a. For
each non-fault-fix, the weight increases by 1 � a. The final step
normalizes each alert type’s weight by the number of alerts sharing
the type. A higher weight implies that alerts with a given type are
more likely to be actionable.

Method limitations: The prioritization technique considers all
alert sharing the same type in aggregate, which assumes that all
alerts sharing the same type are homogeneous in their classifica-
tion. The prioritization fails for alerts generated in later runs of
ASA if the alert type never appears in earlier versions of the code.

Evaluation methodology: Evaluation of the proposed fix-change
prioritization trained the model using the first (n/2) � 1 revisions
and then tested the model on the latter half of the revisions.

Evaluation subjects: HWP was evaluated on three subject pro-
grams, Columba, Lucene,23 and Scarab,24 which are described in
Table 11.

Evaluation metrics: The precision of the tool’s alert prioritization
with the prioritization of alerts based on the project’s history were
compared.

Evaluation results: The best precision for the three subject pro-
grams (in the order listed above) is 17%, 25%, and 67%, respectively
when using HWP as compared to 3%, 12%, and 8%, respectively when
prioritizing the alerts by the tool’s severity or priority measure.
Additionally, when only considering the top 30 alerts, the precision
of the fix-based prioritization is almost doubled, and in some cases
tripled, from the tool’s ordering of alerts.
7.6. ISA

� Study: Kong et al. [34]
� Artifact Characteristic: AC
� ASA: RATS,25

ITS4 [50], FLAWFINDER
26

� Language: C
� AAIT type: Data fusion (5.1.7)
� Research methodology: Other model comparison (5.2.2)

Objective: Kong et al. [34] use data fusion to identify vulnerable
code using alerts generated by ASAs focused on finding security
vulnerabilities.

AAIT method: The ISA tool reports a score for each aggregated
alert type, which represents the likelihood the alert is a vulnerabil-
ity. The score is the combination of the tool’s alert severity and the
contribution of each tool summed across all tools. The feedback
from the user when inspecting alerts contribute to the weights
associated with a specific ASA.

Method limitations: The technique is limited by the mapping of
alerts between tools.

Evaluation methodology: The prioritization of the ISA AAIT is
compared with the prioritization of the individual ASA tools that
lucene.apache.org/.
24 Scarab is an open-source issue tracker. Scarab may be found at: http://

scarab.tigris.org/.
25

RATS is ASA for C, C++, Perl, and Python developed by Fortify Software: http://
www.fortify.com/security-resources/rats.jsp.

26
FLAWFINDER is ASA for C: http://www.dwheeler.com/flawfinder/.

http://pmd.sourceforge.net/
http://sourceforge.net/projects/columba/
http://sourceforge.net/projects/columba/
http://www.jedit.org/
http://lucene.apache.org/
http://lucene.apache.org/
http://scarab.tigris.org/
http://scarab.tigris.org/
http://www.fortify.com/security-resources/rats.jsp
http://www.fortify.com/security-resources/rats.jsp
http://www.dwheeler.com/flawfinder/
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make up the ISA tool on subject programs with known
vulnerabilities.

Evaluation subjects: All of the subject programs used by Kong
et al. in Table 11, have known vulnerabilities, which provide a
measure of how well ISA and the individual ASA tools perform.

Evaluation metrics: ISA is evaluated by the number of false posi-
tives and false negatives. Additionally, the efficiency of the tool is
compared with the individual ASA tools.

Evaluation results: The results show that ISA has a lower rate of
false positives and false negatives than the individual ASA for two
of the three subject programs. Additionally, ISA is found to be more
efficient (defined as the likelihood of finding a vulnerability when
inspecting the alerts) than the individual static analysis tools.

7.7. YCK07

� Study: Yi et al. [58]
� Artifact characteristics: CC
� ASA: AIRIC [30]
� Language: C
� AAIT type: Machine learning (5.1.6)
� Research methodology: Train and test (5.2.5)

Objective: Yi et al. [58] compare the classification of actionable
and unactionable alerts for several machine learning algorithms.

AAIT method: The static analysis tool AIRAC, finds potential buffer
overrun vulnerabilities in C code. There are three types of symp-
toms: syntactic, semantic, and information about the buffer uncov-
ered by static analysis. The process for building the linear
regression model considered attribute subset selection to mini-
mize collinear attributes.

Eight machine learning techniques prioritize static analysis
alerts into actionable and unactionable groups. The symptoms
about the alerts are the independent variables and the classifica-
tion of the alert is the dependent variable. The alerts are divided
into a training and test set using an approximately two-thirds
one-third split. The training-test cycle is repeated 100 times. The
results are summed over all 100 models. The open-source statisti-
cal program R27 was used to train and test the models.

Method limitations: Some of the symptoms as input to the model
are correlated, which may cause some of the models to be
ineffective.

Evaluation methodology: Overall, there were 332 alerts gener-
ated for all of the subject programs. The different machine learning
techniques were evaluated by comparing the AUC of ROC curves.
The closer the area is to one, the better the performance of the
model.

Evaluation metrics: The YCK07 models used the AUC of ROC
curves for evaluation. Additionally, the number of unactionable
alerts inspected before the first percentage of actionable alerts
were identified is reported.

Evaluation subjects: The YCK07 models were evaluated on 36 files
and 22 programs, the details of which are not provided.

Evaluation results: The AUC for the ROC curves varied from 0.87
to 0.93. Additionally, only 0.32% of the unactionable alerts were
identified before the first 50% of the actionable alerts. Also,
22.58% of the actionable alerts were inspected before the first
unactionable alert was inspected.

7.8. ELAN, EFANH, and EFANV

� Study: Boogerd and Moonen, 2008a
� Artifact characteristics: CC
27 R is an open-source statistical program: http://www.r-project.org/.
� ASA: UNSPECIFIED

� Language: C
� AAIT type: Graph theory (5.1.3)
� Research methodology: Other baseline comparison (5.2.4)

Objective: Boogerd and Moonen [7] prioritize alerts by execu-
tion likelihood [4] and by execution frequency [7].

AAIT method: Execution likelihood is defined as ‘‘the probability
that a given program point will be executed at least once in an
arbitrary program run’’ [7]. Execution frequency is defined as
‘‘the average frequency of [program point] v over all possible dis-
tinct runs of [program] p’’ [7]. Alerts with the same execution like-
lihood are prioritized the same, but may actually have varying
importance in the program. Execution frequency solves the limita-
tion of execution likelihood by providing a value of how often the
code will be executed [7].

Prediction of the branches taken when calculating the execu-
tion likelihood and frequency are important to the Execution
Likelihood ANalysis (ELAN) and Execution Frequency ANalysis
(EFAN) techniques [7]. The ELAN AAIT (introduced in [4]) traverses
the system dependence graph of the program under analysis
and generates the execution likelihood of an alert’s location
and heuristics are used for branch prediction. There are two
variations of the EFAN AAIT: one uses heuristics for branch
prediction based on literature in branch prediction (EFANH) and
the other uses value range propagation (EFANV). Value range
propagation estimates the values of variables from information
in the source code.

Method limitations: The graphs generated may be missing paths
or have infeasible paths which represent false negatives and false
positives, respectively.

Evaluation methodology: The effectiveness of the ELAN and EFAN

prioritization techniques were compared with execution data,
gathered by automated regression test runs, and not with the ac-
tual actionability of ASA alerts.

Evaluation subjects: Five open-source programs as listed in Ta-
ble 11, were used in the case study to compare ELAN and EFAN.

Evaluation metrics: Wall’s unweighted matching method [54]
compares the prioritized list of alerts with the list of alerts ordered
by the actual execution data and produces a measure of
correlation.

Evaluation results: The ELAN AAIT had an average correlation of
0.39 with the actual execution values for the top 10% of alerts,
which outperformed the EFANH and EFANV with correlations of 0.28
and 0.17, respectively. One limitation of the work is that the cre-
ated system dependence graph may miss dependencies, which
could lead to missing potential problems. Additionally, dependen-
cies that are actually impossible to traverse introduce unactionable
alerts.

7.9. APM

� Study: Heckman and Williams, 2008
� Artifact characteristics: AC
� ASA: FINDBUGS [25]
� Language: Java
� AAIT type: Mathematical and statistical models (5.1.5)
� Research methodology: Benchmarks (5.2.3)

Objective: Heckman and Williams [21] adaptively prioritize
individual alerts using the alert’s type and location in the source
code.

AAIT method: The adaptive prioritization model (APM) re-ranks
alerts after each developer inspection, which incorporates feed-
back about the alerts into the model. The APM ranks alerts on a scale
from �1 to 1, where alerts close to �1 are more likely to be

http://www.r-project.org/
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unactionable and alerts close to 1 are more likely to be actionable.
Alerts are prioritized by considering the developer’s feedback, via
alert fixes and suppressions, to generate a homogeneity measure
of the set of alert’s sharing either the same alert type or code loca-
tion. APM relies on developer feedback to prioritize alerts. Three pri-
oritization models were considered that focused on different
combinations of artifact characteristics: (1) alert type (ATA), (2)
alert’s code location (CL), and (3) both alert type and the alert’s code
location (ATA + CL).

Method limitation: An assumption of the model is that alerts
sharing an alert type or code location are likely to be all actionable
or all unactionable. If the assumption does not hold, then the pri-
oritization of actionable alerts will likely be poor.

Evaluation methodology: The three prioritization models were
compared with the tool’s ordering of alerts, an optimal ordering
of alerts, and with each other.

Evaluation subjects: Three versions of APM were evaluated on the
six subject programs of the FAULTBENCH benchmark as listed in
Table 11.

Evaluation metrics: APM was evaluated with accuracy, precision,
recall, and the correlation with an optimal ordering. Additionally,
evaluation of the APM models used a variation of a ROC curve, called
the anomaly detection rate curve. The anomaly detection rate
curve measures the percentage of anomalies detected against the
number of alert inspections and is similar to the weighted average
of the percentage of faults detected measure used by Rothermel
et al. [43].

Evaluation results: The anomaly detection rate curve for the APM

prioritization models was larger (53.9–72.6%) than the alerts or-
dered by when FINDBUGS identified them (TOOL – 50.4%). Additionally,
comparing the prioritization generated by each of the techniques
with an optimal prioritization demonstrated a moderate to moder-
ately strong correlation (0.4–0.8) at a statistically significant level
for five of the six subject programs. The average accuracy for the
three APM models ranged from 67% to 76% and the model that pri-
oritized alerts by the alert’s type (ATA) was found to perform best
overall.

7.10. MMW08

� Study: Meng et al. [38]
� Artifact characteristics: AC
� ASA: FINDBUGS [25], PMD, JLINT [2]
� Language: Java
� AAIT type: Data fusion (5.1.7)
� Research methodology: Other (5.2.6)

Objective: Meng et al. [38] propose an approach that merges
alerts that are common across multiple static analysis tools run
on the same source code.

AAIT method: The combined alerts are first prioritized by the
severity of the alert and are then prioritized by the number of tools
that identify the alerts. A map associates alerts for a specific tool to
a general alert type.

Method limitations: The MMW08 technique has the same limita-
tions as Kong et al. [34].

Evaluation methodology: They run FINDBUGS [25], PMD, and JLINT [2]
on the subject program.

Evaluation subjects: Evaluation of the MMW08 technique was
on a small, UNNAMED, subject program, which is not listed in
Table 11.

Evaluation metrics: MMW08 was evaluated by the number of
alerts generated.

Evaluation results: Meng et al. [38] report four of the alerts gen-
erated for the small subject program, one of which was reported by
two tools.
7.11. RPM08

� Study: Ruthruff et al. [45]
� Artifact characteristics: AC, CC, SCR
� ASA: FINDBUGS [25]
� Language: Java
� AAIT type: Mathematical and statistical models (5.1.5)
� Research methodology: Other model comparison (5.2.2)

Objective: Ruthruff et al. [45] use a logistic regression model to
predict actionable alerts.

AAIT method: Thirty-three artifact characteristics are considered
for the logistic regression model. Reducing the number of charac-
teristics for inclusion in the logistic regression model is done via
a screening process, whereby logistic regression models are built
with increasingly larger portions of the alert set. Characteristics
with a contribution lower than a specified threshold are thrown
out until some minimum number of characteristics remains. Two
models were considered: one for predicting unactionable alerts
and the other for predicting actionable alerts. For the actionable
alerts model, two specific models were built: one considered only
alerts identified as actionable and the second considered all alerts.

Method limitations: One limitation is that the screening window
may be the incorrect size for the code base. Additionally, some of
the artifact characteristic values were measured at the time of
the screening, not at the time when the alert was generated, which
may not reflect actual conditions for alert generation. Finally, some
of the artifact characteristics are collinear, but collinear factors are
not excluded from the generated model.

Evaluation methodology: Evaluation of the RPM08 models com-
pared the generated models with a modified model from related
work in fault identification and a model built using all of the sug-
gested alert characteristics. The related work models use complex-
ity metrics to predict faults and come from the work by Bell,
Ostrand, and Weyuker [3,41]. Ruthruff et al. [45] adapt the models,
which they call BOW and BOW+, for alert prioritization. The BOW

model is directly from the work by Bell et al. The BOW+ models
additionally included two static analysis metrics, the alert type
and the alert priority, in addition to the complexity metrics.

Evaluation subjects: RPM08 was evaluated on 1652 alerts from
Google’s bug database, as shown in Table 11.

Evaluation metrics: The cost in terms of time to generate the
data and build the models was compared in addition to the preci-
sion of the predictions.

Evaluation results: The APM08 model building technique, which
used screening, took slightly less than seven hours to build and
run, which is reasonable compared to the 5 days required to build
the APM08 model using all available data. However, the proposed
model takes a longer time than the BOW and BOW+ models. The pre-
cision of the screening models ranged from 73.2% to 86.6%, which
was higher than the BOW and BOW+ models with precision between
60.9% and 83.4%, especially when predicting actionable warnings.

7.12. Prioritization results discussion

The ELAN, EFANH, and EFANV AAIT developed by Boogerd and
Moonen [4,7] found that the execution likelihood of alert locations
was highly correlated with actual execution, which is encouraging
that their prioritization could be used as a measure of alert sever-
ity. However, the results do not address the accuracy of their prior-
itization in identifying actionable alerts, and thus cannot be
compared to the other prioritization models.

Kremenek and Engler [36] demonstrate the efficacy of Z-RANKING

in identifying actionable alerts for three types of ASA alert detec-
tors compared to a random ordering of alerts. The lock ASA finds
three types of locking inconsistencies. Z-RANKING identified three,
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6.6, and four times more actionable alerts than the random base-
line in the first 10% of inspections for the three types of locks in
Linux. Z-RANKING showed a 6.9 times improvement over the random
baseline for detecting lock faults for System X. FEEDBACK-RANK [35]
showed up to an eight time improvement in actionable alert iden-
tification over a random baseline. The evaluation of FEEDBACK-RANK

used eight ASA tools that each identifies one type of alert. The aver-
age improvement of FEEDBACK-RANK was 2–3 times better than ran-
dom. The use of Z-RANKING or FEEDBACK-RANK improves the
prioritization of alerts when compared to the random ordering of
alerts. The results from Kremenek et al. [35,36] provide empirical
evidence for the efficacy of prioritization techniques; however,
other prioritization techniques did not report the same metrics,
precluding comparison.

Jung et al. [30], Kim and Ernst [32], Yi et al. [58], Heckman
and Williams [21], and Ruthruff et al. [45] report one or more
classification (5.4) and/or prioritization metrics (5.5), but specifi-
cally all of the studies, except Yi et al., report precision. Classifi-
cation metrics may be used on prioritization AAITs when there is
a cutoff value that separates alerts likely to be actionable from
those likely to be unactionable. Table 12 summarizes the five
studies that report precision. Ruthruff et al. [45] demonstrate
the highest precision with their RPM08 AAIT. Heckman and
Williams’ [21] APM AAIT had 67.1–76.6% accuracy with compara-
tively low precisions. The low precision results from averaging
the precision generated at every inspection. Precision is low
when there are few TP predictions, which can occur when the
model is incorrect, or when all TP alerts have been inspected.
Kim and Ernst [31] prioritize alert types by their lifetime and
compare the prioritization with the tools’ prioritization. Addition-
ally, the alert type prioritizations are compared between two
subject programs and have a low correlation of 0.218. Yi et al.
[58] compare prioritization techniques using the AUC for Response
Operating Characteristic curves. The boosting method had the
largest area under the curve at 0.9290.

Kong et al. [34] show that the alert prioritization generated via
data fusion of redundant alerts performed better than the alert pri-
oritization’s of the individual tools. Meng et al. [38] discussed some
of the alerts found by the ASA; however, there were no numerical
results on a larger subject program.

Similarly to the classification results, the static analysis tools
and subject program languages used varied by study, which, again,
only allows for some general comparison of the results. However,
the overall results support the use of prioritization AAITs to prior-
itize actionable alerts.

8. Combined discussion

The results presented in the selected studies and summarized
in Sections 6.8 and 7.12 support the premise that AAIT supple-
menting ASA can improve the prediction of actionable alerts for
developer inspection, with a tendency for improvement over
baseline ordering of alerts. Analyzing the combined results answer
RQ3.

� RQ3: What conclusions can we draw about the efficacy of AAITs
from results presented in the selected studies?

Seven of the 21 studies presented results in terms of precision:
the proportion of correctly classified anomalies (TP) out of all alerts
predicted as anomalies (TP + FP). When no AAIT is available, we
can consider all unactionable alerts as FPs. Therefore, the precision
of the ASA is the proportion of all actionable alerts out of the unac-
tionable alerts. When using an AAIT, the precision then becomes
the number of actual actionable alerts (those alerts the developer
fixes) out of all alerts predicted to be actionable. Table 12 presents
the combined precision data from seven of the classification and
prioritization AAITs, where data are available.

The precisions reported in Table 12 varied from 3% to 98%,
which demonstrate the wide variability of the AAIT used to supple-
ment ASA. Direct comparisons of the precision are difficult to make
due to the different subject programs used for evaluation and the
different methods used for measuring precision within the study.
For example, the precision of APM was the average precision of
the prioritization after each alert inspection. The precision after
many of the inspections was very low because all actionable alerts
were predicted to be unactionable due to the overwhelming num-
ber of unactionable alerts in the alert set [21]. The other AAIT cal-
culated precision from the initial classification or prioritization.

Figs. 2 and 3, from the data in Table 12, show the size of the se-
lected studies’ evaluated subject programs in terms of KLOC and
number of alerts versus the precision of the subject and factor. A
factor is the AAIT, which represents the process variable of the
experimental evaluation [49]. The precision varies greatly across
the size of the subject program in terms of both the KLOC and num-
ber of alerts for the program. The AAITs that produce the highest
precision for a specific subject program are both from research
done by Heckman and Williams [22] where a process to find the
most predictive artifact characteristics and machine learning mod-
el were applied to the two subject programs jdom and runtime.
The precision for these two subject programs was 89% and 98%,
respectively. Ruthruff et al. [45] reported the next highest precision
of 78% when used a statistical screening process to identify the
most predictive artifact characteristics on a randomly selected sets
of alerts generated on Google’s java code.

BMO8B and APM showed the lowest precision during evaluation.
Precision is low when the actionable alert predictions are incorrect
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and there are many more FPs than TPs. Boogerd and Moonen [6]
report low precision when evaluating BM08B because there are many
more FP alerts reported for an alert type than there are actual vio-
lations in practice. Heckman and Williams [21] average the preci-
sion for each alert inspection in their prioritized list of alerts. If
there were no correctly predicted actionable alerts for an inspec-
tion, the precision was zero for that inspection, which can drop
the average precision across all inspections for a subject program.
The reported accuracy of 67–79% when using APM is more encour-
aging to the usefulness of APM.

The high precision reported by some of the seven studies re-
ported in Table 12 is encouraging that using AAITs to supplement
ASA identifies actionable alerts. Of those alerts identified as poten-
tially actionable by an AAIT, on average 34% of the alerts were
actionable. However, these results to do not identify the actionable
alerts that were missed by an AAIT, which is measured by recall.
Additionally, these results do not identify how well an AAIT was
able to differentiate between actionable and unactionable alerts,
as measured by accuracy. Precision should be considered in addi-
tion to other metrics, like recall, accuracy, and AUC. Studies that re-
port precision, recall, accuracy, and AUC provide a more complete
picture of the efficacy of an AAIT.

The remaining studies all used various metrics to evaluate the
efficacy of AAIT supplementing ASA. The individual results are
summarized Sections 6.8 and 7.12. There are not enough common-
alities between the remaining AAIT to provide a cohesive meta-
analysis. Overall, the individual results are encouraging that using
AAITs to supplement ASA identifies actionable alerts.
Table 12
Precision results for seven of the 21 AAIT.

AAIT Subject Fa

HISTORYAWARE [55] Wine HI

NA

Apache HI

NA

BM08B [6] TVoM Po
N
N

HW09 [22] jdom Av
Runtime Av

JKS05 [30] Linux kernel and classical algorithms Av

HWP [32] Columba M
Lucene M
Scarab M

APM [21] csvobjects AT

CL

AT

Importscrubber AT

CL

AT

iTrust AT

CL

AT

jbook AT

CL

AT

jdom AT

CL

AT

Runtime AT

CL

AT

RPM08 [45] Google Sc
Al
BO

BO
9. Limitations

The SLR process was designed to reduce internal validity; how-
ever, there are some limitations to the process that introduce bias.
The first author primarily handled selection of the studies, with
validation efforts by the second author as described in Sec-
tion 2.3.3. The kappa statistic [18] was utilized to measure the
similarity between the two authors ratings, but only a percentage
of the studies were considered. Including a search of related work
and author’s websites probably mitigated missed studies. None of
the studies added after Stage 3 via related work and author’s
website searches were in the original set of papers obtained
through the database search. However, improperly selected
search terms or inclusion/exclusion criteria may introduce attri-
tion bias.

The quality measurement of the papers is another potential
source of internal validity. The first author assessed the quality of
the papers based on 10 questions, which may lead to measurement
bias. The questions were generated from the authors’ experiences
with reading and writing research papers and relate to the major
sections that are expected to be in research papers.

The first author solely conducted the data extraction portion
of the SLR. Therefore, any data is reflective of the author’s
understanding of the selected study, which is a threat to inter-
nal and external validity of the SLR. A list of specific data to
extract from each study (as shown in Section 2.4.2, was utilized
to minimize the limitation of a single person conducting data
extraction.
ctor KLOC # Alerts Precision (%)

STORYAWARE uk 2860 62
ÏVERANKING uk 2860 53

STORYAWARE 200 738 42
ÏVERANKING 200 738 32
sitive 91 9740 13

one 91 9740 7
egative 91 9740 5
erage 13 420 89
erage 2 256 98
erage uk uk 69

aximum 121 2331 17
aximum 37 1513 25
aximum 64 1483 67
A 1.6 7 32

1.6 7 50

A + CL 1.6 7 39

A 1.7 35 34
1.7 35 20

A + CL 1.7 35 18

A 14.1 110 5
14.1 110 2

A + CL 14.1 110 5

A 1.3 52 22
1.3 52 27

A + CL 1.3 52 23

A 8.4 55 6
8.4 55 9

A + CL 8.4 55 6

A 2.8 98 5
2.8 98 4

A + CL 2.8 98 3

reening uk 1652 78
l-data uk 1652 73
W uk 1652 67

W+ uk 1642 74
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10. Conclusions

The goal of this work is to synthesize available research results
to inform evidence-based selection of actionable alert identifica-
tion techniques. We identified 21 studies from literature that pro-
pose and evaluate AAITs. The various models proposed in the
literature range from the basic alert type selection to machine
learning, graph theory, and repository mining. The results gener-
ated by the various experiments and case studies vary due to the
inconsistent use of evaluation metrics, subject programs, and
ASA. Evaluation metrics are required for direct comparison of re-
sults. However, for those comparisons to be meaningful, the AAIT
should be applied to the same subject programs and ASA. Using a
concurrency ASA on a single threaded application would skew
the results of an applied AAIT.

Of the results reported in the selected studies, we can observe
some high-level trends about AAIT. Seven of the 21 studies re-
ported the precision of their AAIT in classifying or prioritizing
alerts. The precision of the AAITs varied, and there is no evidence
that the precision of a subject program is associated with the size
of the program in terms of KLOC or number of alerts. The AAIT
reporting the highest precision for their subject program are the
HW09 AAIT [22] and RPM08 AAIT [45]. Both of these AAITs consider
the history of the subject program to generate the AAIT and utilize
machine learning techniques, which suggest that AAITs that con-
sider the history or that use machine learning may perform better
than other models. Evaluation of the HISTORYAWARE [55], ALERTLIFETIME

[31], and HWP [32] AAITs provide additional evidence that using
the source code repository can identify actionable alerts with a rel-
atively good accuracy and precision.

The selected studies demonstrate that AAITs tend to perform
better than a random ordering of alerts or the alerts ordered via
the tool’s output [21,31,35,36]. This trend across four of the 21
studies suggests that AAITs are an important addition to ASA.
The Z-RANKING [36] and FEEDBACK-RANK [35] AAIT show a two to six
time improvement over a random baseline at identifying action-
able alerts. The ALERTLIFETIME [31] AAIT provides an ordering of
important alert types from the project’s history that do not match
the priority given to the alert’s type by the tool. The APM [21] AAIT
demonstrated a larger anomaly detection rate curve than the tool
ordering of alerts.

Validation of the reported AAITs consisted of an example or set
of examples. However, the rigor of the validation depends on the
rigor of the baseline of comparison. Some of the studies compared
their AAITs against a random baseline, other models, and a bench-
mark. Still others use as the baseline the output generated by the
static analysis tool or in the case of hybrid techniques, the constit-
uent parts were the baseline. In those cases, performance, typically
in terms of analysis time or size, was also evaluated. The validation
of the remaining studies was a combination of different metrics
dependent on the type of AAIT. The current variety of validation
techniques preclude a definitive comparison of AAITs reported in
literature, but can serve as a starting point for a discussion of a
benchmark for validating AAITs.

Both studies that incorporated model checking [44,59] reported
promising results. Yu et al. [59] demonstrated that their technique
could identify 73 or 74 seeded vulnerabilities and Rungta and
Mercer [44] reported the probability of finding an error across
100 trials as 1.0 or close to 1.0. The types of errors detected by each
technique differed: Yu et al. focused on finding security vulnerabil-
ities and Rungta and Mercer focused on finding concurrency errors.
These results may encourage the use of model checking in combi-
nation with other ASA.

ASA is useful for identifying code anomalies, potentially early
during software development. The selected studies for the SLR have
demonstrated the efficacy of using AAITs to mitigate the costs of
unactionable alerts by either classifying alerts as actionable or pri-
oritizing alerts generated by ASA. Developers can focus their alert
inspection activities on the alerts they are most likely to want to
act on. Ten of the 21 studies use information about the alerts them-
selves to predict actionable alerts [6,21,22,31,32,34,35,38,40,45].
Six of the selected studies utilize information from the develop-
ment history of a project to use the past to predict the future
[6,22,31,32,45,55]. Twelve of the selected studies use information
about the surrounding source code [1,6,7,22,30,36,44,45,55,57–59].
11. Future work

From the analysis of the AAIT studies in literature, we can re-
flect on RQ4.

� RQ4: What are the research challenges and needs in the area of
AAITs?

AAITs provide a mechanism for identifying if ASA alerts are
actionable outside of the ASA itself. The sophistication of these
techniques has increased from a simple alert type selection to hy-
brid models [8,14], machine learning [22,45], and model checking
[44,59]. Nanda et al. [39] suggest that deeper analysis of actionable
alerts is required beyond current ASAs. The deeper analysis may
complement current ASA through model checking and dynamic
analyses that enable a developer to ascertain a concrete error path.
Even with a concrete error path, a developer may not want to fix a
fault (i.e. the fault is in an exception path, the fix may introduce
more faults, etc.); therefore machine learning may be incorporated
with these deeper analyses to identify truly actionable alerts.

However, determining the best way to combine current tech-
niques requires that we understand the strengths and weakness
of each constituent part. We propose that a comparative evaluation
of AAITs is required for further understanding of the strengths and
weaknesses of the proposed techniques. There are several require-
ments for a comparative evaluation: (1) common subject programs
(which imply a common programming language for evaluation);
(2) common static analysis tools; and (3) a common oracle of
actionable and unactionable alerts.

A benchmark for AAIT evaluation would be beneficial to facili-
tate comparative evaluations of presented and emerging AAIT
techniques. Use of a benchmark would allow for the consolidation
of results around specific metrics and provide direct comparison by
providing subject programs. Sim et al. [47] define a benchmark as
providing a motivating comparison, task sample, and evaluation
measures. Effective creation of a benchmark requires collaboration
among researchers in a specific area, like AAIT [47].

Many of the current AAITs share a motivating comparison in
maximizing the precision of actionable alert classification. The task
sample and evaluation measures (in addition to precision) are var-
ied. A discussion in the AAIT community could start work toward a
benchmark. As a starting point, FAULTBENCH [21] has been proposed
to address the need for comparative evaluation of AAITs in the Java
programming language. The initial version of FAULTBENCH [21] con-
tained alert oracles (as part of the task sample) that were gener-
ated by a person inspecting the alerts in the subject programs.
Additional inspections by other researchers could lead to a consen-
sus oracle. Programmatically creating an oracle, as described in
Liang et al. [37] work, could reduce the subjectivity. Inspection
by other AAIT researchers would improve the benchmark’s oracles
An ideal benchmark would build upon FAULTBENCH motivating com-
parison and evaluation metrics to allow for the repeatable, auto-
matic creation of a task sample for any program. The work by
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Liang et al. [37] would be a starting point for the repeatable crea-
tion of a task sample. By having an automated process, the bench-
mark could be language independent.
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